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Chapter 0

Abstract

No one can over-exaggerate the importance of the empty set ) in mathematics,
just as is the case with singleton sets such as {(}}. This note explores {0, 1}, the
two-element set, where 0 is identified with the empty set () and 1 is identified
with the singleton set {(}}. Such a simple yet profound set is the foundation
for various mathematical concepts, including Boolean algebra, logic, set theory,
and general topology. This note examines some examples of adjoint functors
with a lens through {0,1}.



Chapter 1

Preliminaries

1.1 Sets, Maps, and Orders

We assume some working knowledge of informal set theory including sets, sub-
sets, supersets, the empty set (), union, intersection, set difference, complement.

1.1.1 Sets and Maps

Definition 1.1.1 (Complement). Let X be a set and A C X be a subset. We
denote " A=X-A={rec X |z¢A}

Theorem 1.1.1 (Empty Intersection and Empty Union). Let X be a set and
{Ayx C X | X € A} be a A-indexed set of subsets of X. The empty intersection
Mxep Ax is the underlying set X and the empty union |J,cy Ax is the empty set
0.

Proof. By definition:

ﬂA)\::{:rEX|V)\EA:x€AA}. (1.1)
AEA
For the empty intersection, the condition is vacuously true. Hence, (,cy Ax =
X. Similarly:
UArv={zeX|aneA:zecA}. (1.2)
AEA
If the index set is empty, the condition is always false. Hence, | J,cp Ax =0. B

Remark 1. We also have:

(N Arv={zeX|aner:agA}=] A (1.3)
AEA AEA
and
A ={zeX|VAeA iz g A} =) A (1.4)
AEA AEA



Theorem 1.1.2. Let X be a set. For{V, C X |a € A} and{Ws C X | § € B},

(UVa>ﬂ UWws|= U VanWs (1.5)

a€cA BeB (a,B)EAXB
Similarly,
(ﬂ Va> Ul Ws|l= [] VaUWs (1.6)
acA BeB (a,8)€EAXB
Proof.

(U Va>m UWs| ={zeX|3acA:zecV,}

acA BEB
N{zeX|3peB:zecWs} (1.7)
={reX|Ia,p)e AxB:xeV,NWz}

= U Vanws

(a,B)EAXB

Similarly,

(ﬂ Va>u (Y Ws | ={xr e X |V(a,f) € AxB:xeV,UWs}
a€cA BeB (1.8)

= () VaUWs
(e,f)eAXB

For a given map f: X — Y, there are two induced maps:
e Direct image f: 2% — 2V
e Preimage f<:2Y — 2%

where f*W :={z € X | fr e W} forany W C Y.

Theorem 1.1.3 (Properties of Preimage). Let X and Y be sets and f: X —
Y be a map. The preimage map f< preserves the following elementary set
operations:

o [ (Urea Br) =Uxer 7B

o T (nAeABA) :nAeA [T B
o fC(B1—By)=f"B1— "B



where A is an arbitrary index set, By, By, By are all subspaces in'Y for each
A€EA.

Proof. The first two equations are almost identical:

pr“(U Bx>@fp€ U B»

AEA AEA
<:>E|)\€Alfp€B,\ (19)
S 3INeA:pe OB,y

= pcE U feB)\
AEA

and

p€f“<ﬂ BA><:>fp€ () Bx

AEA AEA
SVieA:pe fTB,)

epe () f B
AEA

for each p € A.
Recalling By —Bes ={zx € A|x € By Ax € =By} = B; N =By, and

f<_ (ﬁBz) = {m e X | f.%' € ﬁBQ} =X - f<_Bg = ﬁ]ﬁ_Bg, (111)
we have
J7(B1—By) = f~ (BiN~By)
=fTBiNf7(—By)
=fTBiN~f"B;y
= f"B, - f" Bs.

(1.12)

Thus, the preimage < : 2¥ — 2% preserves union, intersection, and set-difference.
|

1.1.2 Orders

For a set X, we consider binary relations on it, where a binary relation is
represented as a subset of the product set X x X = {(z,y) |z € X Ay € X}.

Definition 1.1.2 (Pre-orders and Presets). A pre-order < on a set X is a
binary relation < such that:

e Reflexive
For each z € X, z < z holds.



e Transitive
If x <yand y < z, then z < 2 holds.

Recalling £C X x X, x < y stands for (z,y) €<. We call the pair (X, <) the
pre-ordered set, in short, a preset.

Definition 1.1.3 (Posets). A preset (X, <) is called a partially ordered set, in
short, a poset, iff the pre-order < is also antisymmetric:

e Antisymmetric

If e <yand y < x, then z = y.

1.2 General Topology

General topology, in short, topology is a brunch of mathematics concerned with
spaces that are invariant under continuous maps.

1.2.1 Basic Definitions

Definition 1.2.1 (Topological Spaces). Let X be a set. A topology on X is a
subset of its subsets 7 C 2% that closed under:
e Arbitrary Union

Each union of members in 7T is also a member of 7.

e Finite Intersection

Each finite intersection of members of 7 is also a member of 7.

Since the union of an empty family of sets in X is @), the intersection of an empty
family of sets in X is X, we may add the following, yet redundant, conditions:

e Both () and X are members of 7.

The pair (X, 7) is called a topological space. Any member in 7 is called an
open subspace of X. In particular, both () and X are open. A subset C' C X is
called closed iff the complement ~C' := X — C' is open, namely —=C € T. Since
=X — X and X = X — (), we conclude that both () and X are clopen.

For a subset Y C X of a topological space (X, T), the induced topology is

Ty ={YnU|UeT}. (1.13)
The pair (Y, Ty) is called a subspace of (X, T).

Definition 1.2.2 (Neighborhoods and Open Subspaces). Let (X, T) be a topo-
logical space, and p € X. A subspace U’ C X is called a neighborhood of p iff
there exists some U € T such that p € U and U C U’. Let N, be the set of all
neighborhoods of p in X relative to 7.



Lemma 1.2.1. Let (X,T) be a topological space, U C X be a subspace. U is
open, U € T, iff U is a neighborhood of every point in it.

Proof. (=) Suppose U € T. Then, for each p € U, U is an open neighborhood
of p.

(<) Conversely, suppose U is a neighborhood to its points. For p € U, let
Vp € T be an open subspace such that p € V,, and V,, C U. Then, we conclude
U =U,er Vp since:

vc|Jvcu (1.14)
peU
U is given by a union of open subspaces in X, hence U is open. |

Definition 1.2.3 (Limit Points and Closure). Let A C (X, 7T) be a subspace.
A point p € X is called a limit point of A iff each neighborhood of p contains
at least one point of A distinct from p:

VU e N, : U ' NA—{p} #0. (1.15)
Let A’ denote the set of all limit points. We call A := AU A’ the closure of A.

Lemma 1.2.2. Let A C (X, T) be a subspace. For any pointp € X, p € A iff
VU €N, : U NA#D. (1.16)
Proof. (=) Let p € A:

e pc A case
For each neighborhood U’ € N, p € U' N A.

e p ¢ A case
For each neighborhood U’ € N,,, UNA=U"NA— {p} # 0 holds.

(«<=) Suppose for each neighborhood U’ € Ny, U'N A # (). Nothing has to be
shown if p € A, as A C A. Hence, we may assume p € A. Then, as A = A—{p},
UNA=U"NA-{p}#0 is the case for each neighborhood U’ € N,,. |

Theorem 1.2.1 (Characterization of Closed Subspaces). A subspace A C
(X, T) is closed iff A= A.

Proof. (=) Suppose that A is closed, i.e., A € T. Each p € =A has an open
neighborhood, namely —A, which does not meet A since AU —A = . So, each
p € —A does not belong to A. We have -4 C —=A, and A D A. Since A C A,
we conclude A = A.

(<) Suppose A = A. We will show —A is open. Let p € =A. Since p € -4,
p is not a limit point of A. Thus, there is some neighborhood U’ € N, with
U'NA = () by Lemmal[l.2.2] We obtain U’ C ~A. That is, =A is a neighborhood
of p. As p € =A is arbitrary, by Lemma[1.2.1] we conclude —A € T. |

Theorem 1.2.2 (Properties of Closures). Let A, B C (X, T) be subspaces.



e The closure A is C-smallest closed subspace of X containing A:

A=({FCX|F>AN-FeT} (1.17)

e ACB=ACB

o A=A, ie., the closure A of A is closed, and the closure-operation is

Proof. Let A:=({F C X | F > AA—F € T}. Since open subspaces are closed
under arbitrary union, the complements, i.e., closed subspaces are closed under
arbitrary intersection. Hence, A is closed. To show A is equal to A, let us
consider their complements:

~Ac-4 Let p € —~A. -Ais an open neighborhood of p with ~ANA=0. Since
A D A, A does not meet A. Thus ~AN A = (). By Lemma pe-A
holds.

—A> -4 Let p € —A. Since p is not a limit point of A, there exists an open
neighborhood U € N, N'T such that U N A — {p} = 0. As p is not in A,
UNA=0, thus A C ~U. Thus, -U is a member of the right-hand side
of (L.17), we obtain A C —U. Since p € U and U C —A, we conclude

p € -A.
Hence, we obtain A={FC X |FD>AA-Fe€T}

e ACB=ACB
Since any closed subspace containing B also contains A, A C B.

e A=14
Sinceg is given by an intersection of closed subspaces, A is closed. More-
over, A C A is the C-smallest subspace containing A.

e AUB=AUB
AU B is closed, and contains both A and B, hence AUA C AUB. As

AU B is closed, containing AU B, C-smallest property implies AU B C
AUB.

e D=0
Since 0 is clopen and @) C 0, the C-smallest property ensures § = 0.



Theorem 1.2.3 (Subspaces and Closures). Let (X,T) be a topological space
and (Y, Ty) C (X, T) be a subspace. For A CY, the closure Ay relative to Ty
is Y N A, where A is the closure of A C X relative to T .

Proof. Tt suffices to show A} = Y N A’ since Ay = A, UA and Y NA =
YUAUA) =Y NAUFYNA)=AU(Y NA).
Let p € A} and Ny, be the set of neighborhood of p relative to Ty:

VU €Ny,: U eT:pe(UNY)cCU. (1.18)
Note that (UNY) e Ty if U € T. Since p € A%,
YU € Ny, : U NnA—{p} #0, (1.19)

ie.,

VU eN,NT:(UNY)NA-{p}#0, (1.20)

we obtain p € (Y N A)’ relative to 7. Recalling A C Y and p € Y, we obtain
peYnNA.
Conversely, let p € Y N A’ relative to T

VU e N, : U NA—{p}#0. (1.21)
Since A C Y, it is equivalent to
VU e N, : U N(ANY) —{p} #0. (1.22)

Now, U'NY contains an open (UNY) € Ty with pe UNY. Thatis, U' NY
is a neighborhood of p relative to 7y, namely U'NY € Ny, moreover p € Aj,.
Hence, we establish 4}, =Y N A/, and Ay =Y N A. [ |

1.2.2 Separation Axioms

Definition 1.2.4. The following axioms describe how a topology can distin-
guish points in the underlying set:

To A Ty space — a Kolmogorov space — is a topological space in which every
pair of distinct points is topologically distinguishable, i.e., there exists an
open subspace that contains one of them and not the other.

T1 A T space — a Fréchet space — is a topological space in which for every
pair of distinct points, each has a neighborhood not containing the other.
In other words, each has an open subspace that contains it but not the
other.

T> A T; space — a Hausdorff space — is a topological space (X, 7) in which
each of two distinct points have disjoint neighborhoods, that is, if p # g,
there are U’ € N, and V' € N, with U' NV’ = ().



1.2.3 Basic Open Sets

... We can to an extent preassign the notion of nearness desired. [Dug66]

Definition 1.2.5 (Subbases and Generated Topology). Let X be a set and
S C 2% be a set of subsets in X. As 2% is a topology of X,

7s == {T C 2% | T is a topology on X with S C T} (1.23)

is non-empty. Their intersection:

mrg = ﬂ{T €71s} (1.24)

is called the topology generated by S. It is the C-smallest topology containing S.
For the generated topology, the generating set S is called the subbbasic open

set, in short, a subbase.

Remark 2 (Basis). No further conditions for being a subbase of some topology.

If S satisfies:

1. S covers X

For each x € X, there is a B € § with x € B. This condition guarantees
that X is open.

2. Binary Intersection

Let B1,By € §. If x € By N By, there is a By € S with x € B3 and
Bs C B; N By. This condition guarantees that By N Bs is open.

Then § is called the set of basic open sets, in short, a basis for the topology
ﬂ T8 of X.

Theorem 1.2.4. Let X be a set, S C 2% be a basis — S satisfies both conditions
and[g - and Ts be the set of all unions of S. Ts is a topology on X . Moreover,
Ts =N7s-

Proof. As the condition [l] ensures S covers X, we have X € Ts. If we take the
empty union, € Ts. By definition, 7Ts is closed under arbitrary union. The
condition [J] guarantees Ts is closed under binary, hence any finite intersection.
Therefore, Ts forms a topology on X.

Since S C Ts holds, 7s € 7s, hence (| 7s C Ts. To show the other inclusion,
let U € Ts. By construction, there exists By C S with

U=|JBv=J{VeBu}. (1.25)

As By C S, and any member T € 7 contains S, we obtain By C T for each
T € 7s. Thus, By C T holds for each T € 75. Le., U € [\ 7s. [ |

10



1.2.4 Continuous Maps

For given topological space (X, Tx) and (Y, 7y ), and a map between the under-
lying sets f: X — Y, we use f to associate the topology since f* preserves
the elementary set operations as shown in Theorem [1.1.3

Definition 1.2.6 (Continuous Maps). Let (X, Tx) and (Y, Ty) be topological
spaces. A map f: X — Y is called continuous iff the preimage of each open
subspace in Y is open in X. That is, f< maps Ty C 2V into Tx:

f<_l Ty — Tx. (126)
The set of all continuous maps from X to Y is denoted by C°(X,Y).

Theorem 1.2.5 (Characterizations of Continuity). Let (X, Tx) and (Y, Ty) be
topological spaces, and f: X — Y be a map. The following are equivalent:

1. f € CYX,Y) by means of Definition .
For a subbase (or a basis) Sy C Ty, Sy C Tx.

The preimage of a closed subspace in'Y s closed in X.

e e

For each x € X and for each neighborhood V' € Ny, there exists a
neighborhood U’ € N s.t., fU' C V.

5. fAC fA for every AC X.
6. f©B C f<B for every BCY.

Proof. As Sy C Ty, s, : Sy — Tx. Conversely, suppose f~Sy C
Tx is the case. Let W € Ty . Since Ty is generated by Sy, W is given by some,
not necessarily finite, union of finite intersections of members in Sy:

w=J (BW m---mBJ(j)), (1.27)
AEA

where B§>‘) e B;j) € Sy for each A € A. Applying Theorem , we obtain

rw=U e (Y0 nBl) = U (roBM)nen(roBY) . (12s)
AEA

AEA

Since (f‘_B£)‘)> N---N (f‘_Bj(i‘)) € Tx and W is a union of such open subspaces
in X, we conclude f<W € Tx.
By Theorem
fTEA =Y -A=X—-fTA==-fA (1.29)
for every A C X.

Let x € X, V' € Ngp,and V € Ty sit., fr e Vand V C V. As f
is continuous, f<V € Tx. Since z € <V, we may set U' = f<V.

11



Let A C X and z € A; we will show fz is a member of fA. Consider
V' € Nyu; as we assume [ there exists U' € N, with fU" C V'. Since z € A,
by Lemma U’' N A # () holds. Hence, fx € fA:

DS fU'NA)C fU'NFACV' N fA. (1.30)
(5] =[6) Let B C Y and A := f~B. As we assume[5]
f(feB)=fAC fA=[(f<B)CB. (1.31)
Thus, f<B C f<B.

(@ Let B C Y be a closed subspace. As we assume @ feBC fB.
Since B = B, we conclude f<B = f<B:

fEBC f“BC f*BC fB. (1.32)
See Theorem [[.2.1] [ |

Lemma 1.2.3 (Universal Property of Relative Topology). Let Y C (X,T) be
a subspace. The relative topology Ty defined in Definition|1.2.1) can be charac-
terized as the C-smallest topology on Y for which the inclusion map:

Y5 Xiy—y (1.33)
is continuous, namely i € C°(Y, X).

Proof. Let Ty be an arbitrary topology on Y. Suppose i: Y < X is continuous
relative to (X, 7) and (Y, Ty"). We will show that 7y D Ty
Let U € T. Asi € C° ((Y, ’Ty') , (X, T)), the preimage i< U is open in
(Y. Tv'):
iTU=UNY eTy. (1.34)

Since U is arbitrary, it follows that any open subspace in Y relative to Ty,
UNY € Ty is a member of Ty, hence Ty C Ty'. [ ]

Theorem 1.2.6 (Properties of Continuous Maps). Let (X, Tx), (Y, Ty),(Z,Tz)
be topological spaces.

o If feC'X,Y) and g € C°(Y, Z), the composition gf € C°(X, Z).

o If f € COX,Y) and A C X, the restriction f|, : A =Y is continuous
relative to the relative topology on A.

o If f € C°X,Y), the coristriction of f on its image is continuous:

feC® (X, fX). (1.35)

Proof. Suppose f € C°((X,Y),g € C°(Y,Z), and A C X.

12



e Since f[: Ty — Tx and ¢~ : Tz — Ty, and (go ) = f© og*, the
continuity of the composition g o f follows:

(9o /)™ : Tz — Tx. (1.36)

o Leti: A— X. Since
fla=foi (1.37)
and as shown above i € CY(4, X) relative to T4, the composition is con-

tinuous.
e For each V € Ty, i.e., for each open subspace VN fX in fX,
FEV LX) = FEVAFT (fX) = SV, (1.38)
Since f<V is open in X, the restriction f: X — fX is continuous.
|

Definition 1.2.7 (Homeomorphisms and Topological Invariance). Let (X, Tx)
and (Y, 7Ty ) be topological spaces. A map f: X — Y is called a homeomorphism
— a topological isomorphism — iff the following conditions hold:

e The underlying map f: X — Y is bijective.
e Both f and f~! are continuous.

If f is a homeomorphism, it is denoted by f: X =Y. Two spaces X and Y are
homeomorphic, written X = Y, iff there is a homeomorphism between them.
It is worth mentioning that a homeomorphism f: X & Y is an open map —
the image of an open subspace U € Tx along f is open fU € Ty, since f~!
is continuous. Moreover, a homeomorphism f: X = Y is a bijection for the
underlying set and the associated topologies:

f:X=2Y

1.39
f_l: Ty =2 Tx ( )

Thus, any topological property about X is mapped to that of Y. We call any
property of spaces a topological invariant iff whenever it is true for one space,
it is also varied for every homeomorphic space.

Theorem 1.2.7. Homeomorphism is an equivalence relation in the class of all
topological spaces.

Proof. Observe:

o Reflexive

For any topological space X, 1x: X & X.

e Symmetric
Ff:X2Y,Y =X via f~L.

13



e Transitive
Iff: X=2Yandg: Y =Z thengo f: X = Z.

See Theorem [1.2.6 | |

1.3 Category Theory

Category theory offers a general theory of mathematical structures and relations.

1.3.1 Basic Definitions

Definition 1.3.1 (Categories). A category C consists of a class of objects |C|
and, for each pair of objects A, B € |C|, a set of arrows from A to B, denoted
as C(A, B), such that:

e Each arrow ¢ in C has unique domain and codomain, namely X 2 Y with
X, Y elC|

e Each object X € |C| has a unique arrow X X x.

e For any pair of arrows f, g in C, if the domain of g is equal to the codomain
of f, their composite arrow gf = go f exists, namely if A L Band B % C,
their composition is A EINVs)

These arrows in C also satisfy the following axioms:
e For any arrow A ER B, both fl14 and 1pf are f.
o1t AL B,B% C,and C LN D, the compositions h(gf) and (hg)f are
both equal to A 9l p,
Remark 3 (Small Categories). A category C is called small iff |C| is a set.

Definition 1.3.2 (Isomorphisms). Let C be a category. An arrow f € C(A, B)
is called an isomorphism iff there is f’ € C(B, A) such that f'f = 14 and

ff=1g.

Definition 1.3.3 (Functors). Let C and D be categories. A covariant functor,
in short a functor F' from C and D, denoted F': C — D, consists of the following
correspondences:

e For each object C € |C|, there exists F'C € |D|.
e For an arrow f € C(X,Y), there exists F'f € D(FX,FY).

These correspondences satisfy the following axioms:

14



eFor X Ly & Zin C, FgFf = F(gf) holds. That is, the composition

FX L Py 29 FZ in D is equal to FX 290 pz.

e For each X € |C|, Flx =1px.

We denote D€ the class of functors from C to D.

Remark 4 (Opposite Categories and Contravariant Functors). Let C be a cate-
gory. The opposite C°P is given by:

e The same class of objects |C°P| = |C]|.

e An arrow f°? € C°P(X,Y) is an arrow in C so that the domain and
codomain are swapped, f € C(Y, X).

The correspondence C — C°P preserves the categorical structure, exchanging
domains and codomains:

e For each object X € [C|, 1x — 1x°? = 1x.
e For f°P € C°P(X,Y) and g°? € C°P(Y, Z), we define g°? f°F to be (fg)°".
op op op op
That is, X 2 v 25 Z is (ZiYLX) - (Zf—g>X) .

Hence, C°P forms a category — the opposite category. A contravariant functor
F from C to D is a functor F': C°? — D.

Theorem 1.3.1. Functors preserve isomorphisms.

Proof. Let f € C(A, B) be an isomorphism and F': C — D be a functor. Since f

is an isomorphism, there is an arrow f’ € C(B, A) with f'f =14 and ff' = 1p.

Then, Ff € D(FA, FB) has an inverse F'f’, since
Ff'oFf=F(ff)=Fla=1pa

1.40
FfoFf = F(ff) = Flg = Lrg (140
Hence, F'f is an isomorphism if f is an isomorphism. |

Definition 1.3.4 (Natural Transformations). Let C,D be two categories, and
F:C — D and G: C — D be two functors. A natural transformation 6 from
F to G, denoted as 0: F = G is given by a |Cl|-indexed class of arrows in D,
namely {#c € D(FC,GC) | C € |C|}, such that Gco ¢, = f¢, o Fe for each
¢ € C(Cy,Cs). That is, the following diagram is commutative:

FC, —25 FCy

b, l ie% (1.41)
GCl T GCQ

for each ¢ € C(C1,Cy). We call 8¢ € D(FC,GC) C-component of §: F = G.

15



Remark 5 (Curien’s Promotion |[Cur08]). Let C be a category and f € C(A4, B).
With the terminal category 1 of a singleton set {x} with the identity map on
it, we may identify A € |C| as a functor A:1—>Cand f € C(A, B) as a natural
transformation f: A= B.

L C* Ale (1.42)
|

B 1p

Here, Al, = 1z, =14, B1, = 1p, and f* = f. If no confusion is expected, we
omit the ~ symbol.

Theorem 1.3.2 (Functor Category). Let C,D be categories, D be the class of
functors. Then D¢ and natural transformations among them form a category if
C is small.

Proof. We will show that when C is small, D¢ is locally small, namely for each
pair F,G € D¢, D°(F,G) forms a set.

Let F,G € D¢ be functors. Consider the class of natural transformations
DE(F,G). Let § € D°(F,G). Recall the very definition, @ is indeed a set of
C-indexed set of maps in D, {§c € D(FC,GC) | C € |C|}, such that is
commutative for each ¢ € C(C1, Cs).

Next, consider a correspondence C KA D(FC,GC). This defines a class-
valued map d: |C| — 2P, where 2P is the power class of arrows in D. Since
IC| is a set, the image 0 |C| is a set. Moreover, the union of the image Ud |C| ==
Ucee 9C is a set, containing 6:

DE(F,G) c us|C|. (1.43)
Hence, D°(F,G) is a set. [ ]

Remark 6. Recalling Remark [5| since we may identify A, B € |C| as A: 1 — C
and B: 1 — C, we have f € C* (4, B).

Definition 1.3.5 (Vertical Composition and Horizontal Composition). Let C
and D be categories. For # € D¢(F,G) and 7 € D¢(G, H), their vertical com-
position 7 0 § € D¢(F, H) is given by

{rc0bc € D(FC,HC) | C € |C} (1.44)
since

(T08)g, 0 Fec=1c,00c,0Fc=1c,0Gecolc, = Hcote, ofc,.  (1.45)
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For natural transformations 0: F'= G and o: H = K:

F H
c_ -p_ "¢ (1.46)
\52' \I_(ﬁ’

we define their horizontal composition 8 * o via the following lemma:
Lemma 1.3.1 (Godement Product). Consider:
e HO: HF = HG, oG: HG = KG, and
cGoHO: HF = KG. (1.47)

e oF: HF = KF, K0: KF = KG, and
KboolF: HF = KG. (1.48)

Then, cGo HO = K@ oo F. We define 0 x o by the corresponding commutative
diagram:
H6
HF — HG
o’F\H/ H/UG KOooF =o0Go HE. (149)

KF— KG
Ko

Proof. We will first show that H6 is a natural transformation. Let f € C(A4, B).
Consider:

rA L grp

HGAi lH&B (1.50)

Since 0: F' = G is a natural transformation and H: C — D is a functor,
HOpoHFf=H(@poFf)=H(Gfol4)=HGfoHb4,, (1.51)
i.e., the above diagram is commutative. Hence Hf: HF = HG is a natural
transformation. Similarly, oG, oF, and K6 are also natural transformations,
and both 0G o Hf and K60 o oF are natural transformations from HF to KG.

Let C € |C|. For ¢ € D(FC,GC), since o: H = K is a natural transfor-
mation, C-components of these natural transformations satisfy:

orc -2 ko

G’FC\L \LJGC K@C OCO0pc = O0@gC © HGC (152)
KFC —— KGC
Kboc

Hence, {Kfc oopc | C € |C]} and {ogc o HO¢c | C € |C|} define the same nat-

ural transformation. ]

Remark 7. The commutative diagram in (1.41)) defines ¢ * 6 for ¢ € C(Cy,Cy)
and 0: F = G, see Remark [5], where ¢ € C¥(Cy, Cy) with 6 € DC(F,G).
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1.3.2 String Diagrams

Following [Cur08], we introduce string diagrams as pictorial representations of
arrows in categorical calculations.

Definition 1.3.6 (String Diagrams). We represent a natural transformation:

F G
CZ_ "D~ & wGF=H (1.53)
H
as follows:
D
X 7
C m £ (1.54)

H

e Poincaré dual
In this representation, categories are 2-dimensional areas separated by
lines of functors, which are 1-dimensional; natural transformations are
0-dimensional. This correspondence is Poincaré dual to the ordinary dia-
grams.

e Elevator Rule — Godement’s Product

Godement’ product 0 % o in Lemma [1.3.1]is expressed as:

= (1.55)

This is a key axiom of this notation. The natural transformations can
freely move up and down as long as they keep the ambient algebraic struc-
tures, particularly the domains and codomains of functors.

Remark 8 (Composition Rules and Identities). Functors F': C — D and G: D —
& can be composed GF: C — &:

GF (1.56)

Relative to this composition rule, the identities are expressed as follows:
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o i:le=F:

1c W
F
e lg: G=G:
G
G

Among functors and natural transformations, we have

e HY: HF = HG, and 0G: HG = KG:

HF F ‘ HF
HO = 0 H = lgx0
HG G HG
(1.59)
HG H HG
oG = G o = ox*xlg
KG K KG
With Remark [B] we obtain:
FA A FA
Ef = f F = lpx*f (1.60)
FB B FB
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1.3.3 Adjunctions and Kan Extensions

Definition 1.3.7 (Adjunctions). An adjuction — a pair of adjoint functors —
is a pair of functors F': C — D and G: D — C with natural transformations
n: le = GF and e¢: FG = 1p that satisfy the following zig-zag identities:

F=L FGF ¢ =% Gra
\ﬂEF 1p = €eF o Fy, \ﬂce lg = GeonG. (1.61)
F G

We denote F' 4 (G, and call F' the right adjoint and G the left adjoint. The asso-
ciated natural transformations 7 and € are called unit and counit, respectively.

Remark 9 (Zig-Zag in String Diagrams).

G
C F D= \ . D ¢ c:% (1.62)
F

€ € G

As a useful characterization of adjunctions, we have the following:
C
Theorem 1.3.3 (Natural Bijection). A pair of functors F»C jc forms an

D
C

adjunction Fgﬁj a with unit n: l¢ = GF and counit e: FG = 1p iff there is

D
a bijection {c,p: D(FC,D) — C(C,GD) for each C € |C| and D € |D| such
that (c,p is natural in C' and D, where the naturality is expressed as:

o For FO—%~pD %D in D,

¢g Gd
Ci@fngD, CC,D’(dOg) =(Gdo (CC,DQ)' (1.63)
g

e For C*C>C'$GD/ in C,

FC

o (f o) = (Corp T f) o Fe. (1.64)
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Proof. (=) Suppose F 4 G with unit n and counit e. Let g € D(FC, D) and
f € C(C,GD). Define (¢,.pg = Ggonc and (s pf = ep o Ff. They form an
inverse pair:

Ce.p (Ce.pf) =GlepoFf)onc =Geponapo f = f

/ (1.65)
Co.p (Co.pg) =€po F (Ggonc) =goepco Fnc =g,

where Gep ongp = (GeonG) D = 1gp and epc o Fne = (eF o Fn)o = 1pc.
Hence, ¢/ = ¢~'. The naturality follows as both 7 and e are natural transfor-
mations.

(<) Conversely, for a given natural bijection ¢, define n¢ == (¢, rclpc and
ep = Cap.p ‘lgp for each C € |C| and D € |D|. Let C € |C| and D € |D|:

(GeonG)p, = (Gep o (ap,rap) 1rap
= Cep,p (€p o lpap)
= (¢ep.po¢ep.p ") lap
=1lep

(eF o Fn)o = (Core,pe ™ lare) o Fic (1.66)
= Cere” " (lare one)
= (Ce,pe ' o Ceyre) Lre
=lrc-

Hence, we conclude Ge onG = 1 and €F o F'p = 1p. ]

Remark 10. The natural bijections are represented as the following;:

g N % . f < Y (1.67)
Y D !

Definition 1.3.8 (Kan Extensions). Let C,D, & be categories, and F': C — &
and K: C — D be functors.

e A left Kan extension of F along K is a pair (L, n) of a functor L: D — €&,
and a natural transformation:

c—Lt.¢

Kl / n: F= LK (1.68)

D
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such that for any other pair (G: D — £,v: F = GK), there exists a unique

mediator p: L = G with v = pKon, where LK M:K> GK is LK ng GK ,
see Lemma [L3.T}

o . = X (1.69)
NN

e A right Kan extension of F' along K is a pair (R, €) of a functor R: D — &,
and a natural transformation:

G

D

KTY ¢:KR=F (1.70)

C——=¢
F

such that for any other pair (G: D — £,0: GK = F), there exists a unique
mediator v: G = R with § = eovK, where GK =5~ RK is GK 225 RK |

see Lemma [[.3.1F
7
5 - A (1.71)

G

Remark 11 (Limits as Kan Extensions). Let F': C — D be a functor. Suppose
a right Kan extension of F' along the unique functor C — 1, where 1 is the
terminal category, see Remark

We will show such a right Kan extension is a limit cone. Let (R, €) be a right

Kan extension of F' along C 51
e (R,¢) is a cone.

As R: 1 — D is essentially an object in D, the composition C L1580
is a constant functor on R € |D|. Since e: R! = F is a natural transfor-
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mation, for each ¢ € C(C1, Ca) the following diagram is commutative:

€c
5c1i ’ Feoeo, = €c,. (1.72)
FCy, — FCy
Fec

Le., (R,€) forms a cone in D.

e (R,¢) is a limit cone.

Due to the universal property of (R, ¢) being a right Kan extension, for
any cone (D, #) such that

D
0c,
0cy 1‘700901 = 902, (173)
FCl ? FCQ

as 0: D! = F' is a natural transformation, there exists a unique mediator
w: D= R with § = eo vl ie., for each C € |C|, 8¢ = ec o p holds.

Conversely, if F: C — D has a limit (R, ¢€), it defines a right Kan extension
of F along !: C — 1.
Remark 12 (Adjoints as Kan Extension). Let F: C — D and G: D — C be
functors. Suppose F' 4 G with unit n: 1¢ = GF and counit ¢: FG = 1p. Then
e (G,n) is a left Kan extension of 1¢ along F.
Consider (H: D — £,v: 1¢ = HF). «y becomes

lgry = H (eF o Fn)oy = HeFoHFnoy = HeFoyGFon = (He o yG) Fon.

(1.74)
That is, He o yG: G = H is the desired mediator:
n
n gl
Y N G Y

V\F e \# =r (1.75)

H

e (F,¢) is a right Kan extension of 1p along G.
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Consider (H: D — £,§: HG = 1¢). 0 becomes

0y = doH (GeonG) = JoHGeoHnG = eod FGoHnG = eo(dF o Hn) G.
(1.76)
That is, 0 F o Hn: H = G is the desired mediator:

g
G%:G n /g =¢ (1.77)
5 /G v/ s
€ 1)

€

Conversely, if the following two conditions hold:
o (G: D—C,n: 1c = GF) is a left Kan extension of 1¢ along F': C — D.
e [ preserves this Kan extension.

Then F' - G with unit 7.
We first find the counit. Since (F'G, F'n) is a left Kan extension of F' along
F, there exists a unique mediator €: F'G = 1p such that 1 = eF o F'n:

F
F Fn n bl
F - 1p - W - Y (1.78)
o 1p
F F € F €
1p

(1.79)
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implies:
n=1grn=GeFoGFnon=GeF onGF on= (GeonG)F oy (1.80)

Since (G, 7) is a left Kan extension of 1¢ along F, the unique mediator 14 must
be Ge o nG.

Theorem 1.3.4. Left adjoints preserve left Kan extensions.
C
Proof. Consider an adjunction Fgﬁjc with unit n: 1¢ = GF and counit

D
e: FG = 1p, and a left Kan extension (LxE: B—C,u: E= LxFE oK) of
E: A—Calong K: A— B:

e
Kl G p:E= LgEoK (1.81)
L FE

We will show (FoLgFE, Fu) is a left Kan extension of FE along K, in other
WOI"dS, LK(FE) = FLKE.

For simplicity, let L := LxgF. Consider H: B — D and v: FE = HK.
Applying 7, there exists a unique mediator v: L = G H such that

E

E

n %
P
7/ XK XU (1.82)
K{ HY

since (Lg E, 1) is a left Kan extension of E along K. By a zig-zag identity,

v = 7 & - v (1.83)
K
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we obtain v = (eH o Fv) KoFpu. ThiseHoFv: FL — H is the desired mediator
for (FL, Fu) being a left Kan extension of FE along K. |
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Chapter 2

Adjunctions in Topology

2.1 Spaces, Presets, and Posets

Definition 2.1.1 (Concrete Categories). Here are some categories of structured
sets with structure-preserving maps:

e Set of sets with maps

e Pre of pre-ordered sets with monotone maps, and Pos of posets with
monotone maps

e Top of topological spaces with continuous maps

2.1.1 Presets and Alexandroff Topology

Definition 2.1.2 (Upper Section). Let (A, <) be a preset. An upper section
of A is a subset U C A such that for all a,b € A:

acUNalb=beU. (2.1)

Let T'4 denote the set of all upper sections of (A, <).

Theorem 2.1.1 (Alexandroff Topology). Let (A, <) be a preset. The set of
upper sections T' 4 is a topology on A. We call T 4 the Alexandroff topology of
(A4,5).

Proof. A €T 4 holds. () € T'4 is, vacuously, true.

Let U,V € T'4. If they do not meet U NV = (), as shown above, ) € T'4.
Suppose a e UNV. Forbe A, if a < b, then b € U and b € V since both U
and V are upper sections. Hence, be UNV,and UNV €T 4.

Let I' € T'4 and a € JI”. Then, there exists at least one W € I" with
a€W.Forbe A)if a < b, then be W C |JI". Hence, |JT” € T'4. [ ]
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Theorem 2.1.2 (Upgrading). For a preset (A, ), let ft (4,5) = (A, Ta).
This object assignment induces the corresponding arrow assignment. Hence,
1: Pre — Top is a functor.

Proof. Let f € Pre(A, B) be a monotone map, namely a; < as = fa; <
faa. Relative to the Alexandroff topologies of (A, <) and (B, <), we will show
f f = f is continuous. Let W € I'g, and aj,as € A. Suppose a1 < ao
and a; € (ff /)W = f<W, ie., faz € W. Since f is order-preserving,
fai £ fas, and W € I'g is an upper section of B, we conclude fa, € W.
Hence, az € (ff f)©W. We conclude (ft f)* W is an upper section of A, i.e.,
(ﬂ‘ f)eWGFA. Hence, (’ﬂ f)e I'p = T4 |

2.1.2 Specialization Preorder and Separation Axioms

You should remember that a topological space need not be hausdorff.
The separation properties Ty and T play a minor role here. [Sim11]

Definition 2.1.3 (Specialization Preorder). For a topological space (S, Ts), the
specialization order < of (5, Tg) is the following comparison on S:

ri<seVUeTs:relU=secl. (2.2)

Lemma 2.1.1. Specialization orders are preorders.

Proof. Let (S,Ts) be a topological space and < is the specialization order of
(S, Ts). Tt suffices to show that < is transitive.

Suppose 7 < s and s S t. Let U € Tg such that r € U. Sincer < s, s € U,
which implies ¢t € U. Hence, r < . |

Theorem 2.1.3. Let (S,Tg) be a topological space and < is the specialization
order of (S,Tg). Forr,s € S, r < s iff r € {s}, that is, r is a member of the
closure of the singleton subspace {s} C S relative to Tg.

Proof. Since r £ s is equivalent to:
VUeTs:s€e-U=re-U (2.3)

In other words, any closed subspace in S that contains s also contains r. Hence,
r must be in the C-smallest closed subspace that contains s. By Theorem [1.2.2]
we conclude r € {s}. [ |

Theorem 2.1.4. Let (S, Ts) be a topological space and < is the specialization
order of (S, Ts).

o (S,Ts) is a Ty space iff < is a partial order.

o (S,Ts) is a Ty space iff < is equality.
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Proof. Let (S,Ts) be a Ty space, < be the specialization preorder of (5, Tg),
and s,t € S. Suppose s < tand t < s, but s # ¢ for contradiction. Since (S, Tg)
is Ty, there exists an open O € Tg that contains only one of {s,t}; without loss
of generality, s € O and t ¢ O. t € =0 implies s € =0 since s < ¢, which is
absurd. Thus, s =t holds.

Conversely, suppose the specialization preorder < of a topological space
(S, Ts) is a partial order. Consider two distinct points s # ¢ in S. As (5,5) is
a poset, s # t implies either s £ t or t £ s. Without loss of generality, we may
set s £ t. By Theorem we obtain s € —{t}. Since ~{t} € Tg, it is the
desired open subspace, since {t} C {t} implies t € {t}, i.e., t & ~{t}.

Let (S,7s) be a Ty-space, < be the specialization preorder of (S, 7g), and
s,t € S. Suppose s < t but s # ¢ for contradiction. Since (S, Tg) is Ty, there
are open U,V € Tg with s e U, t € V,but s ¢ V and ¢t € U. Since s £ ¢ and
s € U, we obtain t € U, which is absurd.

Conversely, suppose the specialization preorder < of a topological space
(S, Ts) is merely the equality =. Let s # t be two distinct points in S. That is,
sZtandt L s:

se~{t} Nt € ~{s}. (2.4)

Since both —{t} and —{s} are open, we obtain the desired open neighborhoods:

tg —{t} Asd-{s}. (2.5)
since s € {s} and t € {t}. ]

Theorem 2.1.5 (Downgrading). For a topological space (S, Ts), let (S, Ts) ==
(S,S), where < is the specialization order. This object assignment induces the
corresponding arrow assignment. Hence, |}: Top — Pre is a functor.

Proof. Let f € Top(A4, B) be a continuous map. We will show |} f = f is
monotone. Let aj,as € A. Assume a; < as. Suppose, for contradiction,
that (} flax £ (I f)az. By Theorem this condition is equivalent to

fa1 € ~{fas}, and

a € 1 (~{fazt). (2.6)

Since —{fas} € Tp, its preimage is also open f* (—\{fag}> € Ta. Recalling

a1 £ ag, we conclude ay € f* (“{f&g}), i.e., fas € ={faz}, which is absurd.
Hence, | f is monotone. |

Lemma 2.1.2. Let (A, £) be a preset and I'4 be the Alexandroff topology on
A. For a,b € A, if a < b then a € {b}, where the closure {b} is relative to
(Av FA) :ﬂ (A, g)

Proof. Let a,b € A. Suppose a £ b. Let U € I'4. Since U is an upper section
of A, if a € U then b € U. It is equivalent to:

be-U=ac-U. (2.7)
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In other words, any closed subspace relative to I' 4 that contains b contains also
a. Hence, a € {b}. [ |

Theorem 2.1.6. Let (A, <) be a preset, T' s be the Alexzandroff topology on A,
and < be the specialization preorder of the topological space (A,T 4). We claim
<=<. In other words, |} (A,2) = (4,5).

Proof. Recalling <C A x A, let (ay,a2) €:

ay £ as. (2.8)
If U € "4 contains a; € U, since U is an upper section of A, as € U:

ai < as. (2.9)

Thus, as subsets of A x A, we conclude <C<.
Suppose, for contradiction, that this inclusion is strict. Then, there exists
at least one pair (s,t) € A x A such that s <t but s £ ¢.

e Since s < t,
VUeT :5€eU=tel. (2.10)

e Since s £ ¢, by Lemma

S € ﬁm. (2~11)

Now, —{t} € T'4 and t ¢ ~{t}, we have a contradiction. ]

Corollary 2.1.6.1. The converse of Lemma[2.1.9 is also the case, namely for
a preset (A, ), a S b iff a € {b}, where {b} is relative to f} (A, ).

Proof. Suppose a € m By Theorem m it is equivalent to a < b, where <
is the specialization preorder of (A,I'4). As shown above, in Theorem [2.1.6}
a<biff a <b. [ ]

Theorem 2.1.7. Let (S,Ts) be a topological space, (S,<) = (S, Ts) be the
preset with the specialization preorder, and (S,T's) = (S,Ts). We claim
7?9 CcTIg.

Proof. We will show that any member in 7g is an upper section relative to the
specialization preorder <.

Let U € Tg, and s,t € S. Suppose s € U and s < t. By the very definition
of <, see Definition we conclude ¢t € U. Hence U is an upper section,
Uela. |
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Now we have a pair of functors:

ﬂ( ju (2.12)

Top

To show that they form an adjuction, by Theorem [1.3.3] it suffices to show
that Top (1 (4,2),(S,Ts)) and Pre ((A, <), (S,7Ts)) are naturally bijective
for any preset (A, <) and any topological space (S, Ts):

Theorem 2.1.8. Let (A,X) be a preset, (S,Ts) be a topological space, and

0: A S (2.13)

be a map between the underlying sets. We claim that 0 is monotone relative
to 4 (S, Ts) iff it is continuous relative to + (4,<). In other words, as sets of
mappings, Top (I} (A4,2),(S,Ts)) and Pre ((A,2), (S,Ts)) are the same.

Proof. Suppose (A4, <) _ (S, =) is monotone, where < is the specialization
preorder of (S, Ts):

s<teVUeTg:seU=tel. (2.14)

We will show 0 : Tg — T' 4, where I' 4 is the Alexandroff topology. Let U € Tg
and a,b € A. Suppose a < b; since 6 is monotone, fa < 6b. If a € 65U, i.e.,
fa € U, since a < 6b, we obtain 6b € U. Hence, b € 6 U. We conclude that
0 U is an upper section of A:

0 U €T a. (2.15)

Thus, 6 is continuous.

Conversely, suppose 6 is continuous. We will show # is monotone relative to
the specialization preorder <. Let a,b € A. Suppose a < b. For an arbitrary
U € Ts, 05U € T'y is an upper section, a € U = b € 6 U. That is,
facU = 0acU:

fa < 0b. (2.16)

Thus, # is monotone. |

By Theorem [2.1.8] we obtain the following adjunction:

Pre

ﬂ§4jb (2.17)

Top
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2.1.3 Topological Spaces and Posets — A Natural Isomor-
phism

Theorem 2.1.9. For a topological space (X,Tx), let O(X,Tx) = (Tx, Q).

This object assignment induces the corresponding arrow assignment, namely

O(f) = f< for f € C°((X,Tx),(Y,Ty)). Hence, O: Top — Pos is a con-

travariant functor.

Proof. Let (X,Tx),(Y,Ty) be topological spaces, and f € C°(X,Y). Note
that any set with set inclusion C forms a poset, hence (Tx,C) is an object of
Pos. For V.W € Ty, it V.C W, we obtain f<V C f< W, since

refVefreV=freWsasre fCW (2.18)

for each x € X. Hence, Of is monotone.
Since O (1x) = 1x“: Tx — Tx, O preserves identities. We will show O

passes across compositions. For y f y 2. 7 inTop, and U € Ty,

O@gNHU=(gH"U
={zeX|gfzeU}

={reX|freg U} (2.19)
={zeX|zefT(¢"U)}
Recalling f< = Of, we obtain O (gf) = Of o Og. |

Definition 2.1.4 (Sierpinski Space). Let 2’ be 2 := {0,1} with the following

topology:
{0,{1},{0,1}}. (2.20)
We call 2" Sierpiriski space, and the associated topology Sierpiriski topology.

Theorem 2.1.10 (Continuous Characters). For a topological space (X, Tx), let
(X, Tx) = C°((X,Tx),2). We call =(X,Tx) the set of continuous char-
acters of (X,Tx). For f € C°((X,Tx),(Y,Ty)), define Zf = _o f with the
pointwise partial order <:

pSq:eVyeY py < qy, (2.21)

where p,q € 2(X,Tx), and 0= 0,01, and 1 £ 1. We claim Z: Top — Pos
s a contravariant functor.

Proof. We will first show that Zf converts continuous characters of Y into
continuous characters of X. Let p: Y — {0,1} be a map. Since the following
preimages are both open in Y:

p{0,1} =Y ApT0 =0, (2.22)
the map p is continuous relative to Sierpinski topology iff p* {1} is open in Y:

2f:CU(Y, Ty), 2) = C°((X, Tx), 2). (2.23)
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If pe COUY,Ty),2) = Z(Y,Ty), p~ {1} € Ty holds. Then (Ef)p = pf

satisfies:
(ENp)" {1} =N {1} =7~ (" {1}) € Tx. (2.24)

Hence, (2f)p € C° ((X,Tx),2') = Z(X, Tx).
Next, we will show that Zf: Z(Y,7y) — E(X, Tx) is monotone. Let p,q €
= (Y, Ty) be continuous characters of Y. Suppose p < ¢. Then, we obtain:

Efp=pf =af =(Efa (2.25)
Finally, consider identities and compositions:
Hly =_olyx (2.26)
For x f y % . 7 in Top,
E(gf) =-o(g9f) =(og)o f=EfoEy. (2.27)
Hence, =: Top — Pos is a contravariant functor. |

Definition 2.1.5 (Characteristic Functions). Let X be a set and U C X be a
subset. We call:

1 z€U

. (2.28)
0 otherwise

XxU:X—>{O71};.’L‘l—>{

the characteristic function of U C X.

Lemma 2.1.3. Let (X,Tx) be a topological space and U € Tx be open. The
characteristic function of U is a continuous character of X relative to Sierpiriski
topology:

xxU € C%(X,2). (2.29)

Remark 13. If no confusion is expected, we simply denote C°(X,Y) for the set
of continuous maps between two topological spaces (X, Tx) and (Y, Ty ).

Proof. Since (xxU)™ 0 =10, (xxU)" 2= X, and
xU)" {l} ={z e X | (xxU)z =1} =T, (2.30)
we conclude xx U is continuous. |

Theorem 2.1.11. Let (X, Tx) be a topological space. Recalling O (X, Tx) =
C°(X,2), we obtain

xx:0(X,Tx) = E(X,Tx) (2.31)
of an assignment between two posets. We claim that xx is an isomorphism.
Moreover, it is a natural transformation between O and =.
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Proof. For U,V € O(X,Tx) = (Tx, C), suppose xxU = xxV. Then
U=(xU)" {1} = (xxV)" {1} =V. (2.32)

Thus, xx is injective.

For a given ' € Z (X, Tx), define U’ :== '~ {1}. Since ¥’ € C° (X, 2), such
the preimage U’ is open in X. Hence, ¥’ = xxU’, and xx is subjective.

Next, we will show that x is monotone. For U,V € O (X,Tx) = (Tx, C),
suppose U C V:

o xxUly =1=xxVly
e XxUly_y=0=1=xxVl]y_y
e Otherwise, both xxU and xxV are zero.
Thus, xxU < xxV.
Finally, we will show x: O = =Z. For f € C°(X,Y), namely X f y in

- >

Top, consider:
ox <oy
Xxi lXY (2.33)

We will show that
xxofT: Ty = C°(X,2)
(cof)oxy: Ty — C(X,2)
are equal. Let W € Ty and =z € X,
(xxofTW)z=xx (fTW)z
_ {1 x € fCW

0 otherwise

(2.34)

1 fzeW
- 0 otherwise
= (v W) fz
=(xyWof)x
=((cof)oxyW)a.
Hence, xx o f< = (-0 f) o xy holds. |

(2.35)

o
Remark 14. We conclude that Top Pos are naturally isomorphic via y:

x: 03 C°(_,2) = Top(_,2), (2.36)
where 2 = {0, 1} is associated with the Sierpinski topology 2" = (2, {0, {1},2}).
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2.2 Compact-Open Topology and Locally Com-
pact Spaces

2.2.1 Compact Spaces — Closed Maps

For a topological space (X, Tx) and its subspace A C X, an open covering of
Ais a set of open subspaces U C Tx such that A C UU = (Jy, U. A finite
subcover of an open covering U of A is a finite subset of U that also covers A.

Definition 2.2.1 (Compact Spaces). A topological space is called a compact
space iff every open covering of the space contains a finite subcover.

For a topological space (X, Tx), let Kx be the set of all compact subspaces
in X.

Definition 2.2.2 (Closed Maps). A map between topological spaces is called a
closed map iff a direct image of a closed space in its domain is a closed subspace
in the codomain space.

Theorem 2.2.1 (Compactness via Closed Projections). A topological space K
1s compact iff for every topological space X, the canonical projection:

Tx: K xX —X (2.37)

s a closed map relative to the product topology.

Remark 15 (Product Topology). For {(Xx, 7x,) | A € A} of a set of topological
spaces, the product topology is the generated topology of the following subbase:

(MU XEAAU €Tx,}, (2.38)

where mx: [],cp Xa — X\ is a projection for each A € A. By definition, as this
subbase makes the projections continuous, the product topology is C-smallest
topology on which 7y € C° (HAeA X, X,\) for each )\ € A.

Proof. (=) Let X be a topological space and K be a compact space. We will
show 7y is a closed map; if X = (), nothing has to prove. Let C C K x X be a
closed subspace; if 7xC = X, as X C X is a clopen subspace in Y, done. So
we may suppose 1xC C X.

Select x € = xC. Since mx is a surjection, there is at least one k € K with
(k,2) ™ 2. Then such a pair (k,z) € ~C, otherwise (k,x) would be be in C,
so z = wx(k,x) € mxC, which is absurd. Thus, z = 7x(k,z) € 7(=C), and
hence ~mxC C wx(~C). However, it implies 7xC D —7x(—-C) = nxC. So, we
conclude 7xC = —7(=C) and -7xC = 7w (—=C).

The preimage 7x* (z) = K x {2} does not meet C, for otherwise (k,z) €
K x{z}NE, we obtain 7x (k,x) = x € my C, which is absurd. Hence, K x{z} C
—C. Since =C C K x X is open, for each point (k,z) € K x {x}, there are open
neighborhoods Uy, € N N Tk and Vi, € N N Tx such that (k,z) € Uy X Vi
and

U x Vk,iﬁ C —C. (2.39)
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Since {Uy | k € K} is an open cover of the compact space K, there is a finite
subcover:

KcUgU---UUy,. (2.40)
Define Wy, := Wy, o N --- N Wy, .. Since, for each k; € {k1,...,kn},
W, x Ukj C thx X Ukj C ﬁC’, (2.41)
we conclude:
WxxKCWxxUUkj:UWxUk c —C. (2.42)
j=1 j=1

Hence, W,, C mx (—C) = -wxC. This W, is the desired open neighborhood of
x; applying Lemma [1.2.1] we conclude that —wx C' is open.

(<) Let (X,Tx) be an arbitrary topological space and U C Tx be an ar-
bitrary open covering of X. Define X, := X U {oo}, where co ¢ X. For an
arbitrary subset A C X, we call A closed iff either

oo € AV A is finitely covered by U. (2.43)

This relation defines a topology on X,
e Since co € X, the complement ) is open.
e Since ) is vacuously covered by () C U, its complement X, is open.

e Arbitrary Union

For an arbitrary subset of open subspaces {V\ C X | A € A}, if at least
one V), is finitely covered by U:

- U V)\ = m _‘V>\ C —|V>\0 (244)
AEA AEA

SO as - U)\eA V). Otherwise, every —V), contains oo:
e ()-V=-JW (2.45)
AEA AEA
Hence, = J,ca Vi is closed and its complement | J,., Vi is open.

e Binary Intersection
Let U,V be open. Consider = (U NV):
SUU-V={zreX|zgUVagV}
={zeX|-(zeUnzeV)} (2.46)
=-({UnNV).

— If at least one of ~U and —V contains oo, then co € -UU-V. Hence,
~UU-V ==(UNYV) is closed.
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— Otherwise, both =U and =V are finitely covered by &. Then -U U
-V =~ (UNV) is also finitely covered by U.

Hence, the complement U NV is open.

By hypothesis, the canonical projection mx_ : X x Xo — X is a closed map.
Clearly, X g Xoo. Within the product space X x X, consider a subspace:

X xXCXxXoo (2.47)

and its closure X x X C X x X, relative to the product topology. We will show
that oo is not in mx__ (X x X CX X Xoo). Suppose, for contradiction, there is
some x € X with (z,00) € X x X C X x X,. Since U is an open cover of X
there is some U € Y with x € U. Let - U := Xo —U. Since 0o € —ooU C X,
U C X, is open; U C U is covered by itself, U C X, is closed as well. Then
15U is open with oo € = U. The product subspace U X =,,U C X x X is
an open neighborhood of (z, 00) with

(U x ~cU)N (X x X) =0. (2.48)

By Lemma [T.2.2] we have a contradiction.
Since co & Tx_ (X x X):

. (X xX) =X (2.49)

is closed, by hypothesis, in X,. As oo € X, X must be finitely covered by U.
Hence, X is compact. |

2.2.2 Compact Open Topology and Locally Compact Spaces

The idea of topologizing the set of all continuous maps of one space
into another plays an important role in modern topology. [Dug66]

Definition 2.2.3 (Compact-Open Topology). Let (I,7;) and (X, Ty') be topo-
logical spaces. For K € Ky and V € Ty, let

(K,V):={0eC'LY)|0K CV}. (2.50)

The compact topology on the set of continuous maps C°(I,Y) is the generated
topology by the following subbase:

(K, V) |Ke KAV eTv}. (2.51)

See Definition Let I — Y denote the space of continuous maps from I to
Y with the compact-open topology.

Theorem 2.2.2 (Currying). Let (I,77) be a topological space. For a pair of
topological spaces, (X, Tx) and (Y, Ty), if x x [ — Yoy is continuous relative

to the product topology, then its curried form is also continuous:

X (I—=Y), (2.52)
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where (Ypa)i == Y(x,i) forx € X and i € I, and I — Y is equipped with the
compact-open topology.

Proof. As the compact-open topology on I — Y is generated by (K,V) for
K € Ky and V € Ty, consider a subbasic open subspace (K, V) C (I —Y') and
x €, (K, V):

x € (K, V)Y o VEk € K : (boa)k=9(x, k) eV (2.53)

That is, (z,k) € ¥V for each k € K. Since 9 is continuous and V € Ty,
<V is open in X x I. Thus, there are open neighborhoods U, € N, N Tx
and W), € N, N T for each k € K such that

(LU, k) S Uz,k X Wy C QZJHV (254)

Since {W}, | k € K} covers the compact subspace K C I, there is a finite sub-
cover:

KCWI:Wk1U~-'UWkn. (255)
Define Uy :== Uy, N--- N Uy, . Then, we have x € U, € Tx, K C W, and

U, xW =U, x CJ ij = LnJ U, x ij C LnJ U:p,k]- X ij c YTV (2.56)

i=1 =1 =1
Moreover, for each 2’ € X,

T elU,=VweW: (2 w) eV
SVYwe W @, w) = (2 )hweV
sSYweW:we (ha')TV
=VYwe K :we (Pha')V
o € (K, V)
s e %(_(K, V>

(2.57)

Hence, we have U, C ¢, (K, V) with z € U,. By Lemma we conclude
¥, “(K,V) € Tx. By Theorem 1, is continuous. |

Many of the important spaces occurring in analysis are not compact,
but have instead a local version of compactness. [Dug66]

Definition 2.2.4 (Locally Compact Spaces). A topological space (I,77) is lo-
cally compact iff for each point ¢ € I and its open neighborhood U € N; N T7,
there are open W € Ty and a compact K € K such that:

teWCKCU. (2.58)

In other words, a locally compact space is a topological space where each point
has a compact neighborhood. In particular, a compact space is locally compact.
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Theorem 2.2.3 (Uncurrying). Let (I,77) be a locally compact space. For a pair
of topological spaces, (X, Tx) and (Y, Ty), if X _*, (I —Y) 18 continuous

relative to the compact-open topology, then its uncurried form is also continuous:

Xx1-Yy, (2:59)
where ¢ (x,1) == (¢x)i forx € X andi € I.

Proof. Let V € Ty, and (z,1) € V. By definition, ¢¥(z,i) = (¢z)i € V, we
have
i€ (¢x) V. (2.60)

Since ¢z € I — Y is continuous and V € Ty is open, (¢x)<V € T;. Moreover,
as [ is locally compact, there are W € T; and K € K such that

ieW CKC(px)" V. (2.61)
For each k € I,
ke K=ke (¢2)TV & (¢px)k € V. (2.62)
Hence, we obtain (¢z)K C V:
pxr € (K, V). (2.63)
Since ¢ is continuous, we conclude:
x €K, V) e Tx. (2.64)
For each (2/,i') € X x I, we obtain:
(2/,i') € (K, VY x W = (o)1) € (K, V) x K
= ¢’ i) = (p2)i' € V (2.65)
& (@) e ¢t V.

Hence, ¢ (K, V) x W C ¢V is the desired open neighborhood of (x,4); by
Lemma and Theorem [1.2.5] ¢* is continuous. |

Definition 2.2.5. Let (I,77) be a locally compact space. We denote, for a
topological space (X, Tx):
LX =X x1I

(2.66)
RX=1—-X

These object assignments induce the corresponding arrow assignments:
L(X D x) =X xr &8 x

3 (2.67)

R(YSY)=T—Y 25 Y

where
(f x11) (z,7) = (fz,1)

(go)p=gop (2.68)
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Theorem 2.2.4. Let (I,7;) be a locally compact space. With the product topol-
ogy and the compact open topology, we have the following adjoint endo functors:

Top

L=_x1 <4> R=I—o_

Top

(2.69)

Proof. By Theorem [2.2.2] and Theorem [2.2.3] we have currying-uncurrying bi-

jection. By Theorem [I.3.3] it suffices to show the naturality:

e For LX v, y Loy , consider:

Py Rg

X <> RY 2 Ry’

(gorh)s

Let z € X and i € I:

Hence, we conclude (g o), = Rg o 1.

e For X Lo x' %o Ly , consider:

Let x € X and 7 € I:
¢ o Lf(x,i) = ¢"*(fx,i)
=¢'(fx)i
=((¢ o f)x)i

= (¢ o ) (a,1)

Hence, we conclude ¢t o Lf = (¢ o f)ﬁ.

Therefore, these two endo functors form an adjunction.
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2.3 Ambivalent Objects

Consider a contravariant adjunction:

A
F \C%j a (2.74)
S
A
In the covariant form Fgfj @ , we have the unit n: 14 = GF and the counit
Sep

€: FG = 1sop, and the natural bijection in Theoremis Ca,s: SP(FA,S) =
A(A,GS) for A€ |Al and S € |S|.

Hence, the bijection becomes
Ca,s: S(S,FA) = A(A,GS) (2.75)
with the following conditions:
eFor ¢ _s _¢g_ % py inS,
Gs Co
G =G5 ==A ;5 (¢5) = G50 (Ca59) (2.76)
C(9s)
e For A’ a A f; GS iIlA,
Fa ¢TUf

FA \EA/ S CA/’Sil(fa) = Fao (CA’Silf) (2.77)
¢TM(fa)

The unit and counit become:
na = Cacralra € A(A,GFA)
es = (ras,s las € S(S, FGS)
for A € |A] and S € |S].

(2.78)

2.3.1 Posets and Spaces — A Contravariant Adjunction

Theorem 2.3.1 (A Topology on Upper Sections). Let (A,<) be a poset and
T4 be the set of upper sections of A, see Definition[2.1.2. Note that, by Defini-
tion m a poset is a preset with the antisymmetric order <. For each finite
subset a C A, let (a) be a subset of "4 given by

Uela):saCU (2.79)

forU € T 4. These subsets {{a) | a C A is finite} form a basis of some topology,
say Tr,, on 4.
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Proof. We will show the conditions in Remark [2| in Definition [1.2.5

1. {{a) | a C A is finite} covers I'4
Let U € T'4 be an upper section of A. Since ) is a finite subset of A, and
) C U, we conclude U € (0).

2. Binary Intersection
Let a,a’ C A be finite subsets. Consider (a) N (a’). For U € "4, we have

Uela)n{d)ysacprd cUsaUd cU&UEe (aUd), (2.80)
Hence, we conclude (a) N (a) = (a U a’).

Therefore, we may apply Theorem to obtain the generated topology Tr,
as the set of all unions of the basis {(a) | a C A is finite}. |

Theorem 2.3.2. For a poset (A,=), let T(A,S) = (Ta,Tr,). If we define
Yf = f< for a monotone f € Pos (A, B), then Yf: (Tp,Tr,) = (Ta,Tr,) is
continuous. We obtain a contravariant functor Y : Pos — Top.

Proof. Consider (Yf)" and a = {ai,...,a,} C A of a finite subset. For V € I'p
of an upper section in B,
Ve(Xf) (o) & (YV € (a)
s {ar,...,a} C(YHV = [TV
Sa € fTVA--Na, € fTV

S fare VA Afa, €V (2.81)
< {fa,...,fa,} CV

& faCV

< Ve (fa).

Hence, (Yf)* (a) = (fa) is a member of the basis for 7r,,. By Theorem [.2.6]
YfeC% (g, ). [

Theorem 2.3.3. Now we have a pair of contravariant functors:
Pos
T g j o (2.82)
Top
They form a contravariant adjunction.

Proof. Let (X, Tx) be a topological space, (A, <) be a poset, and (T4, Tr, ) =
T(A,S). For ¢ € Top (X,T4), define ¢ by

x € 9% & a € px (2.83)

for each x € X and a € A.
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o 0% A— Tx
Let {a} C A be a singleton subset. For each x € X,

z € ¢tas {a} C pr < ¢ € ({a}) &z € ¢~ ({a}). (2.84)
Hence, we conclude ¢®a = ¢ ({a}) € Tx.

e ¢ is an arrow in Pos

Let a £ bin (A, £). Since ¢a € T'4 is an upper section of A, if a € A then
b € A holds. For each x € X,

r€Pia s a€ pr=b€ Pr o e b (2.85)
Hence, ¢ is monotone ¢“a C ¢b.

We then obtain
Ca,x: Top (X,T4) = Pos (A, Tx); ¢+ ¢°. (2.86)

Let (Tx,C) == O(X,Tx). For f € Pos (A, Tx), define f7 by

a€ ffrexe fa (2.87)
for each a € A and z € X.
o f7:X 5Ty
Let z € X. Suppose a < b in A. Since f is monotone, fa C fb holds.
Then
a€ frox€ fa=>re fbebe . (2.88)

Hence, fz is an upper section in A.

e 7 is an arrow in Top
Consider the preimage f°* and a finite subset a = {ay,...,a,} C A. For
each r € X,
z € f77(a) & f7x € {(a)
< {ay,...,an} C fx
Sar € ffx N Nay € fOx (2.89)
Sxe farN--- ANz € fay
Sz fain---N fay,

Hence, f (a) = fai N---N fa, € Tx. We conclude f7* is continuous.

We obtain
Cax:Pos (A, Tx) = Top (X,Ta); f— f7. (2.90)

They are inverse pair:
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© B 0T =0

For each x € X and a € A, we have:

a€P¥r s x € d¥a s a € P (2.91)

« fr o=

For each a € A and z € X, we have:

€ ff% S a€ ffresx e fa (2.92)

Hence, (4 x = Cax 'and

Pos
T §4j o (2.93)
Top
form a contravariant adjunction. |

Remark 16 (Unit and Counit). Let A € |Pos| and X € |Top|. The unit
na = (1r,)" and the counit ex = (17, )7 are the following arrows:

Pos A" T
(2.94)
Top X — Iy

2.3.2 Ambivalent Objects

Let (A, S) € |[Pos| and TI(4, £) := Pos(4, 2), where 2 = {0,1} is directed by
< with 0 < 1. We call Pos(A4,2) the set of monotone characters of A, where
p < g for p,g € Pos(A,2) iff Va € A: pa £ qa.

As demonstrated in Theorem xa:Ta = Pos(A,2);U — xaU is a
bijection between the underlying sets, where x 24U is the characteristic function
on U C A:

1 acU

) (2.95)
0 otherwise

(XAU)G{

Lemma 2.3.1. For each upper section U € T' g of A, its characteristic function
xaU: A — 2 is continuous.

Proof. Let (A,S) € |Pos|, U € T4, and xaU € Pos(A4,2). We will show
that relative to Alexandroff topology I'4 of A and Sierpinski topology, xaU €
Top(A,2). Recalling U € T'4 is open in A, we obtain xaAU 0 =0, xaAUT2 = A,
and

xaU {1} ={ac A| (xaU)a=1} =U. (2.96)

Hence, xa(U) € C°(4,2) = Top(4,2). [ |
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Therefore, x4: T4 = Pos(A4,2) returns an object in Top. With this bijec-
tion, we may topologize C°(A,2) = Pos(4,2):

Theorem 2.3.4. For each poset (A, <) € |Pos|, x4 € C° (I'4,Pos(A4, 2)).
Proof. Let (A, <) € |Pos|. Consider the uncurried form:
xah: Ty x A—2 (2.97)

We will show x 4* € C° ("4 x A, 2) relative to the product topology and Sierpiriski
topology. It suffices to consider {1} C 2’ and its preimage:

xa" {1} ={(U,a) €Ta x A| (xaU)a=1}. (2.98)
For each (U,a) € I'g x A,
Ua)exat {1} el=(ul)asaclUs{a}cUsUEc @) (2.99)

Hence, we conclude: .

xa* {1} = (a) x U. (2.100)
Since it is the product of a basic open subspace of (I'4,7r,) and an open
subspace of (4,T4), xa?" {1} c T4 x A is open:

xat e (T4 x A,2). (2.101)

As shown in Theorem the original x 4 is continuous if the uncurried form
x ¥ is continuous. Hence, x4 € C°(I'4, A —o 2) is continuous, where A —o 2 =
CY(A,2), see Definition |

Moreover, x: T = II is a natural isomorphism, since

f(—

'h<=——TIp

xAl ixB (2.102)
Pos(4,2) ~—— Pos(B, 2)

is commutative in Top for 4 f B in Pos. It is worth mentioning that the

naturality is essentially shown in (2.33)) of Theorem [2.1.11
Recalling Remark [14] O = Top(_,2), we obtain:

y: T 31 = Pos(_,2). (2.103)
Hence,
Pos
Pos(_,2) <—<> Top(_,2) (2.104)
Top

The object 2 lives in both categories. It is both a poset and topolog-
ical space. ...Furthermore, it induces both of the functors. |[Sim11]

Such an object, sitting in two different categories, is called an ambivalent object,
a dualizing object, etc.
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Canonical Identification
Let A and S be Set-based categories, given by the following Set-valued functors:
U: A—Set, V:S§— Set (2.105)

Consider a contravariant adjunction with n: 14 = GF and €: 1s = FG:

A
F gjj G (2.106)
S
such that both VF: A — Set and UG: S — Set are representable:

e

e There are an object * € |A| and a natural isomorphism «a: A(_,*) = VF,

with a representing element:

1= .l € V%

—~

2.107)

Y

e There are an object * € |S| and a natural isomorphism o: S(_, *)
with a representing element:

UG,

1, = 0,1, e UGx (2.108)

Note that * = \ast and « = \star.

Theorem 2.3.5. The representing elements & = a, 1, € VFx and 7 := 0,1, €
UGx induce a canonical isomorphism between two sets Ux and V.

Proof. Consider 7, € A(x, GF*):

Un. € Set(Ux, UGF«) (2.109)
Let © € Ux:
Un.x € UGF% (2.110)
For Fx € |S],
ope: S(Fx, %) 2 UGFx* (2.111)

is a bijection between two sets. Hence, for the given Un,x € UGF'%, there exists
a unique g € S(Fx,*) with
opxg = Unyx (2.112)

For this g € S(F*,x), recalling G is a contravariant functor, we obtain:
UGyg € Set(UGx, UGF). (2.113)
Their uniqueness implies UGgo = op.g = Un.xz € UGF*. Define w: Ux — Vx:

5 .
U*%UGF*%S(F*,*)—V>Set(VF*,V*)L>V* (2.114)
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by

o (a -
x}%ap*glF g—L=Vgi @ Vg (@) (2.115)

Note that _ (@) is the evaluation at &. Similarly, for y € Vx, we define w’: Vx —
Ux by w'y = Uf (¢) via:

. 5

Vi L5 VEGH 2o A(Go, %) —Y > Set (UG, Us) — 2> U5 (2.116)
where f € A(Gx,*) is a unique arrow such that

agxf=VFfa=Vey e VFG*. (2.117)

We will show wow’ = 1y; the other equation follows due to symmetry. For

y € Vx, set z := w'y = U fo and consider wzx = Vga. For opgy: S(FGx,*) &

UFFG* with Ung«o € UGFGx*, let
5= 0pgs ‘Ungyd € S(FGx,*). (2.118)

Now we have the following parallels arrows in S:
FGx =« (2.119)

Their uniqueness implies g = s o F'f. If we apply V:

VFEf Vs
VF VFGx SV (2120)
Vg
Along with Vg =Vso VFf, a € VFx becomes:
(Vga=Vs(VFfa)=(VsoVe)y=V (soe)y. (2.121)
Then the elevator-rule for
S(-,%)
€ o (2.122)
FG UG
gurantees the following diagram commutative:
UGFGx —25%5 UG«
QTUFG* NTU* (2.123)
S(€x,%)

S(FGx, %) — > S(x,%)
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Evaluating at s € S(FGx,*), we obtain:
(UGeyx 0 OpGs) 8 = 05 0 8 0 €. (2.124)
Now, the left-hand side becomes
UGe, (0rcs+s) = (UGe, o Ungs) o = U (Geong), & (2.125)
According to a zig-zag identity, see Definition [1.3.7] we obtain:
(UGe, 00pGy) 8§ =0 = 0y 14. (2.126)

Hence, we have o, o s o €, = o,14. Since o, is an isomorphism, we conclude
soe, =1y, and

VGa=Viwy=1ly.y=1y. (2.127)

Recalling ww’'y = VGa, we obtain the desired result ww’ = 1y. | |

Remark 17 (Lift). This canonical identification w: Ux = Vx can be seen as an
object sitting in two different categories, namely * € |A| and x € |S|. More-
over, the contravariant functor G: S — A is a lift of the representable functor

S(.,x): S — Set through U via o: S(.,*): S S UG

G
/ J{U o: S(_,*) = UG. (2.128)

S ——= Set
S(-,%)

Similarly, F' is a lift of A(_, *) through V:

/ lv a: A(L, %) = VF. (2.129)

Remark 18 (Ambivalent Objects). For two Set-based categories A and S, an
ambivalent object is a set e that can be furnished in two ways to produce an
object in |A| or an object in |S|. As observed, 2 = {0,1} can be seen as a post
(2, <) or a topological space 2’ = (2,{0, {1}, 2}).

For each A € |A] and S € |S]|,

A(Ae), S(S,e) (2.130)
are both sets. Hence, we have the corresponding contravariant hom-functors:

A(-,0): A — Set

2.131

S(.,0): S — Set ( )
Suppose the “nature” of e enables us to enrich:
A(L,0): A= S

() (2.132)
S(,e):8S— A
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This step is not routine ... When the construction works these en-
richments are compatible with composition, to give a pair of con-
travariant functors ... between the categories. [Sim11]

We, then, have the following natural bijection:
S (S, A(A,e)) 2 A(A,S5(S,0)) (2.133)
where each f € A(A,S(S,e)) is mapped to ¢ € S (59, A(A,e)) defined by:
(¢ps)a == (fa)s. (2.134)
It follows that they form a contravariant adjunction:

A
A(w)é*j S(-0) (2.135)
S
The corresponding unit and counit are both “evaluations:”

e The unit n: 14 = S(A(, ), )

Let A € |AJ:
na: A— S(A(A,e),0) (2.136)

For each a € A and p € A(A,e),
(naa)p = pa. (2.137)

e The counit €: 15 = A(S(,0),0)

Let S € |S|:
€s: S — A(S(S,e),0) (2.138)
For each s € S and f € S(S, ),
(ess) f=fs. (2.139)
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