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0 Introduction

This note explores the fundamentals of classical electrodynamics using geometric
algebras. Also known as timespace algebras or Clifford algebras, geometric
algebras serve as a powerful mathematical framework, not only as an abstract
mathematical structure but also as a natural description of physical laws. Our
primary objective is to reformulate Maxwell’s equations. Initially, we present
them as four equations using ordinary vector analysis such as divergence ∇⃗·
and rotation ∇⃗×, where · is the dot-product and × is the cross-product in
three-dimensional real vector space. We then unify these equations into a single
equation using geometric algebra. To develop this framework, we first review
essential concepts from calculus such as integrals and derivatives. So let us
begin with derivatives:

Definition 0.1 (Continuity, Differentiability, and Partial Derivatives). Let A ⊂
R be a subset and f : A → R be a function. We say that f is continuous at
a point w ∈ A iff for each positive ϵ > 0, there exists a positive δ > 0 such
that |f(z)− f(w)| < ϵ whenever z ∈ E satisfies |z − w| < δ. Schematically, we
express the continuity of f at w ∈ A as “if z tends to w, so as f(z) to f(w):”

z 99K w ⇒ f(z) 99K f(w). (1)

The function f is continuous at w if, roughly speaking, f(z) is ap-
proximately f(w) when z is near w. The differentiability of f is
concerned with finding a more accurate approximation of f by using
a polynomial of degree one rather than the constant f(w). [Bea19]

The function f : A → R is differentiable at w ∈ A iff there is a constant
α ∈ R and a function η : A → R satisfying:

f(z) = f(w) + α(z − w) + (z − w)η(z), (2)

for any z ∈ A, where η(z) 99K 0 as z 99K w in A. Formally speaking, for each
ϵ > 0, there exists δ > 0 such that |η(z)| < ϵ whenever |z − w| < δ for z ∈ A.
In other words, f is differentiable at w iff

f(z)− f(w)

z − w
99K α (3)

as z 99K w in A, where η tends to vanish as z 99K w. If f is differentiable at
each point in A, f is differentiable in A; the correspondence w 7→ α is called the
derivative of f :

f ′(w) = α. (4)

There are several notations such as ḟ(w) and f (1)(w), since this quantity is
commonly referred to as the first derivative of f at w.

Let us consider multivariable cases, for instance, R2. Suppose D ⊂ R2 and
u : D → R. We say u is differentiable at ζ ∈ D iff there are two real numbers
α, β and a continuous function ϵ1 : D → R with ϵ1(ζ) = 0 such that:

u(z) = u(ζ) + (x− ζ1)α+ (y − ζ2)β + |z − ζ| ϵ1(z) (5)
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for z ∈ D, where ζ =

(
ζ1
ζ2

)
and z =

(
x
y

)
. If this is the case,

∂u

∂x
(ζ) = lim

h99K0

u

((
ζ1
ζ2

)
+

(
h
0

))
− u

((
ζ1
ζ2

))
h

= α

∂u

∂y
(ζ) = lim

h99K0

u

((
ζ1
ζ2

)
+

(
0
h

))
− u

((
ζ1
ζ2

))
h

= β

(6)

They are called partial derivatives of u at ζ ∈ D, namely ∂u
∂x (ζ) is the partial

derivative of u along “x” direction at ζ.

1 Linear Spaces and Multivectors

Let V be a finite-dimensional linear space over the set R of scalars. Introducing
a set of basis vectors, we can identify V as Rn, where n = dimV .

1.1 Definitions

Definition 1.1 (Vectors as Directed Line Segments). Let u ∈ Rn be a vector.
With the standard basis, u is expressed as a unique linear combination:

u =

n∑
j=1

uiei, (7)

where {u1, . . . , un} ⊂ R are scalars and {e1, . . . , en} ⊂ Rn is the set of standard
basis vectors:

e1 =


1
0
...
0

 , · · · , en =


0
...
0
1

 . (8)

Thus, each vector in Rn has a unique coordinate n-tuple. We identify u =

∑n
j=1 uiei as a n-tuple

u1

...
un

. Geometrically, u is expressed as a line segment

from origin 0 =

0
...
0

 to the point u =

u1

...
un

. The norm of u is given by the

following standard distance from 0 to u:

|u| :=

√√√√ n∑
j=1

ui
2 (9)
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For example, in R3, |u| =
√
u1

2 + u2
2 + u3

2.

Remark 1 (Span). For the fixed field R, suppose b1, . . . , bn be n elements with
no special relation among them. We call

⟨b1, . . . , bn⟩ :=

{
n∑

i=1

vibi

∣∣∣∣∣{v1, . . . , vn} ⊂ R

}
(10)

the linear space spanned by the bases {b1, . . . , bn} over the set of scalars R. We
denote Rn = ⟨b1, . . . , bn⟩.
Remark 2 (Scalar Product). The linear space Rn is equipped with a scalar
product:

u · v :=

n∑
j=1

uivi. (11)

In particular, u · u = |u|2.

Definition 1.2 (Exterior Products and k-vectors). For two vectors u, v ∈ Rn,
let u ∧ v be a directed area that corresponds to the parallelogram specified by
the following four points:

0, u, u+ v, v. (12)

The direction, if it is well-defined in Rn, is given by the right-hand rule: along
the line segments from 0 to u and from u to u+ v. As a fundamental property,
we assume

v ∧ u = −u ∧ v. (13)

The norm of u∧ v is given by |u ∧ v| = |u| |v| sin θ, where θ is the angle from
u-direction to v-direction.

• 0-vectors

We call the set of scalars 0-vectors.

• 1-vectors

The elements of Rn are called 1-vectors, or simply vectors.

• 2-vectors

Directed areas are called 2-vectors.

In general, a k-vector is given by a directed k-volume of Rn for k ∈ {0, 1 · · · , n}.

Theorem 1.1 (Properties of Exterior Product). For any u, v, w ∈ Rn:

1. u ∧ u = 0

2. distribution laws

• u ∧ (v + w) = u ∧ v + u ∧ w

• (u+ v) ∧ w = u ∧ w + v ∧ w
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3. (au) ∧ (bv) = (ab)u ∧ v for any scalars a, b ∈ R.

Proof. Since the area formed by u and u is zero, we obtain u ∧ u = 0; we may
apply the antisymmetric property: u ∧ u = −u ∧ u. The distribution laws can
be represented in the following areas:

u

v

w

(14)

where the gray area is u ∧ (v + w):

u

v

w

(15)

and two parallelograms are u ∧ v and u ∧ w:

u

v

w

(16)

The bilinear property also follows geometrically:

(au) ∧ (bv) = (au) ∧

v + · · ·+ v︸ ︷︷ ︸
b

 = ((au) ∧ v) + · · ·+ ((au) ∧ v)︸ ︷︷ ︸
b

. (17)

■
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Remark 3 (Extension by Linearity). The exterior product ∧ can be extended
by linearity. We also require the associativity:

(u ∧ v) ∧ w = u ∧ (v ∧ w) (18)

for a k-vector u, a k′-vector v, and a k′′-vector w. Note that for a 0-vector a
and a k-vector u, their exterior product is identified as a scalar multiplication
of a k-vector:

a ∧ u = au. (19)

Definition 1.3 (Multivectors and Geometric Product). A multivector of Rn is
a finite linear combinations of k-vectors.

For any 1-vectors u, v ∈ Rn, we define their geometric product, or simply
the product by:

uv := u · v + u ∧ v. (20)

Recalling v · u = u · v and v ∧ u = −u ∧ v, we obain:

u · v =
uv + vu

2
, u ∧ v =

uv − vu

2
(21)

Remark 4 (Fundamental Basis Vectors). Since ei · ej = δij :

ei · ej =

{
1 j = i

0 otherwise
(22)

we obtain eiei = 1 for any i ∈ {1, · · · , n} and

eiej = ei ∧ ej = −ejei, (23)

if j ̸= i.

Remark 5 (Geometric Algebras). For a real vector space Rn, we call the set of
all multivectors with geometric product a geometric algebra.

1.2 Low-Dimensional Examples

Let us examine a few low-dimensional examples of real vector spaces.

1.2.1 R1 – Line

The set of vectors R = ⟨e1⟩ is essentially the set of scalars.

1.2.2 R2 – Plane

Since there are two R2 = ⟨e1, e2⟩, the set of 2-vectors is spanned by e1e2 only.
Moreover, there are no 3-vector or higher vectors. Hence, the general form of a
multivector in R2 is the following:

V = s+ v1e1 + v2e2 + pe1e2, (24)
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where s ∈ R is the scalar part of V ,
∑2

i=1 viei ∈ R2 is the 1-vector part of V ,
and pe1e2 is called a pseudo scalar of V . That is, the set of multivectors in R2

forms a four dimensional linear space over R:

⟨1, e1, e2, e1e2⟩ . (25)

Let I := e1e2 be the unit pseudo scalar of R2, representing a unit oriented area.

Lemma 1.1. We claim I2 = −1.

Proof. By a direct calculation, by the anticommutativity e2e1 = −e1e2:

I2 = e1e2e1e2 = −e1e1e2e2 = −1 (26)

it follows. ■

Remark 6 (Complex Plane C). The subspace spanned by scalars and pseudo
scalars ⟨1, I⟩ is essentially the same as C.

1.2.3 R3 – Space

The set of multivectors in R3 = ⟨e1, e2, e3⟩ is given by:

⟨1, e1, e2, e3, e2e3, e3e1, e1e2, e1e2e3⟩ (27)

The general form of a multivector of R3 is the following:

V = s+ v1e1 + v2e2 + v3e3 + p1e2e3 + p2e3e1 + p3e1e2 + pe1e2e3, (28)

where s ∈ R is the scalar,
∑3

i=1 viei ∈ R3 is the vector, the 2-vector part
p1e2e3 + p2e3e1 + p3e1e2 is called the pseudo vector, and pe1e2e3 is the pseudo
scalar.

Let I := e1e2e3 be the unit pseudo scalar of R3.

Lemma 1.2. We claim I2 = −1.

Proof. By a direct calculation:

I2 = e1e2e3e1e2e3 = −e1e2e1e3e2e3 = −e1e1e2e2e2e3 = −1, (29)

it follows. ■

Lemma 1.3. Let A be an arbitrary multivector of R3. Then AI = IA.

Proof. It suffices to consider the vector part and pseudo vector part:

• Vector Part

Consider e1 and I = e1e2e3:

e1e1e2e3 = −e1e2e1e3 = +e1e2e3e1. (30)

Similarly, the other cases hold.
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• Pseudo Vector Part

Consider e2e3 and I = e1e2e3:

e2e3e1e2e3 = −e2e1e3e2e3 = +e1e2e3e2e3. (31)

Similarly, the other cases hold.

Hence, the unit pseudo scalar and any multivector are commutative. ■

Remark 7. Similar calculations such as:

Ie1 = e1e2e3e1 = +e2e1e1e3 = e2e3 (32)

imply that the product of i and any 1-vector is a 2-vector. Moreover, a general
multivector of R3 is given by the following sum:

V = s+ v + a+ p, (33)

where s ∈ R is a scalar, v ∈ R3 is a vector, a = Iu with some vector u ∈ R3

is called a pseudo vector, also known as an axial vector, and p = It with some
scalar t ∈ R is a pseudo scalar.

Lemma 1.4 (Cross Product). For vectors u, v ∈ R3, u ∧ v = Iu × v, where
u× v is defined by:

u× v = (u2v3 − u3v2) e1 + (u3v1 − u1v3) e2 + (u1v2 − u2v1) e3. (34)

Then (u× v) · u = 0 holds.

Proof. Let u := (u1e1 + u2e2 + u3e3) and v := (v1e1 + v2e2 + v3e3). Since
Ie1 = e1I = e1e1e2e3 = e2e3,

Iu× v = (u2v3 − u3v2) Ie1 + (u3v1 − u1v3) Ie2 + (u1v2 − u2v1) Ie3

= (u2v3 − u3v2) e2e3 + (u3v1 − u1v3) e3e1 + (u1v2 − u2v1) e1e2

= (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3)

(35)

where we use eiej = ei∧ej . The identity follows by Definition 1.2; we may show
directly:

(u× v) · u = (u2v3 − u3v2)u1 + (u3v1 − u1v3)u2 + (u1v2 − u2v1)u3

= (u2v3 − u3v2)u1 − u1v3u2 + u1v2u3 + u3v1u2 − u2v1u3

= 0.

(36)

Geometrically, u× v ∈ R3 is a normal vector on the 2-vector u ∧ v. ■

Remark 8 (Quaternion and Vector Product). If we define

i := −Ie1, j := −Ie2, k := −Ie3, (37)
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then
i2 = +Ie1Ie1 = +IIe1e1 = −1 = j2 = k2. (38)

Moreover,
ijk = −Ie1Ie2Ie3 = Ie1e2e3 = I2 = −1. (39)

The linear space spanned ⟨1, i, j, k⟩ = ⟨1, e2e3, e3e1, e1e2⟩ is the famous Haml-
ton’s quaternions. For z := z1i + z2j + z3j and w := w1i + w2j + w3j, their
geometric product zw becomes:

− (z1w1 + z2w2 + z3w3) + (z2w3 − z3w2) i+ (z3w1 − z1w3) j + (z1w2 − z2w1) k.
(40)

That is, the real part is essentially the scalar product, and the imaginary part
is the vector product of R3.

Definition 1.4. Let ∇ := e1
∂
∂x + e2

∂
∂y + e3

∂
∂z .

• Three-gradient

For a scalar-valued function f on R3,

∇f = e1
∂f

∂x
+ e2

∂f

∂y
+ e3

∂f

∂z
(41)

• For a vector valued function V = e1Vx + e2Vy + e3Vz on R3,

– Divergence

∇ · V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
. (42)

– Rotation (a.k.a curl)

∇× V =

(
∂Vz

∂y
− ∂Vy

∂z

)
e1 +

(
∂Vx

∂z
− ∂Vz

∂x

)
e2 +

(
∂Vy

∂x
− ∂Vx

∂y

)
e3

(43)

Remark 9. For simplicity, we may also write ∂x := ∂
∂x .

Remark 10. For later convenience, consider ∇ · (∇× V ):

∂x (∂yVz − ∂zVy) + ∂y (∂zVx − ∂xVz) + ∂z (∂xVy − ∂yVx) (44)

If V is smooth enough, we may exchange the order of partial derivatives, so we
conclude ∇· (∇× V ) = 0. Similarly, ∇· (V ×W ) = (∇× V ) ·W −V · (∇×W ):

∇ · (V ×W ) = ∂x (VyWz − VzWy) + ∂y (VzWx − VxWz) + ∂z (VxWy − VyWx)

= (∂xVy − ∂yVx)Wz + Vz (−∂xWy + ∂yWx) · · ·
= (∇× V ) ·W − V · (∇×W ) .

(45)
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1.2.4 R1,3 – Timespace

As an amalgam of a scalar time and 3D space, the dimension of the timespace is
four; a point in the timespace is called an event. Let e0 be the unit time vector
with the space R3 = ⟨e1, e2, e3⟩. Recalling the fundamental asymmetry between
time and space, for instance:

(c(t− t′))
2 − (x1 − x′

1)
2 − (x2 − x′

2)
2 − (x3 − x′

3)
2

(46)

is invariant under Lorentz transformation for two events


ct
x1

x2

x3

 and


ct′

x′
1

x′
2

x′
3

, e0

is anti-commutative with the space coordinates:

e0e1 = −e1e0, e0e2 = −e2e0, e0e3 = −e3e0 (47)

with e0e0 = 1, here we follow [CIA10]. Let x be the timespace vector corre-

sponding to an event


ct
x1

x2

x3

:

x := (ct+ x1e1 + x2e2 + x3e3) e0 = (ct+ x⃗) e0, (48)

where x⃗ := x1e1 + x2e2 + x3e3 ∈ R3 is the ordinary space vector. We obtain:

(x− x′)
2
=

(
c(t− t′) + x⃗− x⃗′

)
e0

(
c(t− t′) + x⃗− x⃗′

)
e0 = c2(t−t′)2−

(
x⃗− x⃗′

)2

.

(49)

Definition 1.5 (Timespace). Let R1,3 := ⟨e0, e1e0, e2e0, e3e0⟩ denote the times-
pace.

Remark 11. Thanks to the anti-commutative property of e0, even though e0
2 =

e1
2 = e2

2 = e3
2 = 1, we obtain the ordinary ”almost-minus metric (+−−−):”

e1e0e1e0 = −e1e1e0e0 = −1 = e2e0e2e0 = e3e0e3e0. (50)

Definition 1.6 (D’Alembertian). Following Definition 1.4:

∇⃗ := e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
. (51)

We define

□ :=
1

c
∂t − ∇⃗, (52)

where

∂t :=
∂

∂t
(53)
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is the ordinary time-derivative. The ordinary 3D Laplacian is given by ∆ := ∇⃗2:

∆ = ∂x
2 + ∂y

2 + ∂z
2. (54)

The corresponding operator in the 4D timespace is the following:

□ := □e0 =

(
1

c
∂t − ∇⃗

)
e0. (55)

Then 4D D’Alembertian becomes:

□2 = □e0□e0 =
1

c2
∂t

2 − ∇⃗2. (56)

2 Maxwell’s Equations

2.1 Principle of Locality – Action through Medium

The principle of locality states that physical interactions – such as force and
energy exchange, or in general, information transfer – occur at finite speeds,
affecting only neighboring points in space.

• Action at a distance

As assumed in the early Newtonian gravity and electrostatics, this con-
cept implies instantaneous effects over arbitrary distances. For exam-
ple, Coulomb’s law in electrostatics describes the force between two point
charges as if it acts instantly, without any intermediate mechanism.

• Locality principle and the concept of Fields – Action through a medium

Faraday introduced the concept of electric and magnetic fields, visualiz-
ing them through field “lines” whose density is proportional to the field
strength, and whose direction represents the orientation of the field vec-
tors. The principle of locality asserts that distortions in these fields affect
only their immediate surroundings, leading to a chain reaction that prop-
agates through space.

• Waves propagation

The concept of fields naturally leads to the idea that interactions are me-
diated through some medium. In electromagnetism, time-varying electric
and magnetic fields generate each other, resulting in wave propagation.
Maxwell’s equations predict that electromagnetic waves in vacuum travel
at a finite speed, reinforcing the principle that interactions are not instan-
taneous but instead propagate at a finite speed through space.

Locality is guaranteed, in some sense, when the guiding principles are written
in terms of differential equations since the infinitesimal comparisons essentially
give differentials.
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2.2 EM Crash Course

Standard textbooks include [Gri23] and [Jac21].

Definition 2.1 (Test Charges and Static Electric Fields). A test charge q is
an object whose size is macroscopically small enough so that we can identify it
as a point. Through a test charge as a probe, we define the static electrostatic
field E⃗ at x⃗ ∈ R3:

f⃗ = qE⃗(x⃗), (57)

where f⃗ is the force on q due to the underlying static electric field E⃗.

Definition 2.2 (Magnetic Flux Density). Consider I⃗ of a steady current under

some magnetic fields. Across a line segment δl of I⃗, let f⃗ be the force on the
current I⃗. We define the underlying magnetic flux density B⃗ by

f⃗ = I⃗ × B⃗δl. (58)

Definition 2.3 (Coulomb’s Law). Let Q and q be two charged particles and

r > 0 be the spacial distance between Q and q. Consider the force f⃗ acting on
q due to Q: ∣∣∣f⃗ ∣∣∣ = k

|qQ|
r2

. (59)

This relation, with k > 0 is called Coulom’s law. For later convenience, we
introduce ϵ0 > 0 via

k =
1

4πϵ0
. (60)

Remark 12 (Gauss’ Law). Suppose Q > 0 is at the origin 0 ∈ R3. Let x⃗ ∈ R3

be a point on the spherical shell with radius r > 0, and n⃗(x⃗) be the unit normal

vector from in to out direction. Then, since the electric field E⃗ at x is outward,

E⃗(x⃗) · n⃗(x⃗) = 1

4πϵ0

Q

r2
. (61)

Summing all the contributions up on the spherical shell, i.e., by integrating over
the surface: ∫

|x|=r

E⃗(x⃗) · n⃗(x⃗)dS =
1

4πϵ0

Q

r2
4πr2 =

Q

ϵ0
. (62)

In general, over the surface S of some volume V :∫
∂V

E⃗(x⃗) · n⃗(x⃗)dS =
the total charges in V

ϵ0
, (63)

where ∂V = S represents the surface – the boundary – of the given volume
V . It is worth mentioning that the electric filed E⃗ at x⃗ ∈ ∂V contains the
contributions from both the charges in V and outside of V .
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Remark 13 (Differential form of Gauss’s Law). Introducing the charge density
ρ, Gauss’s law becomes:∫

∂V

E⃗(x⃗) · n⃗(x⃗)dS =
1

ϵ0

∫
V

ρ(x⃗)d3x. (64)

Applying Gauss’ divergent theorem, we obtain∫
V

∇⃗ · E⃗(x)d3x =
1

ϵ0

∫
V

ρ(x⃗)d3x. (65)

Since this equation is the case for any volume, we conclude:

∇⃗ · E⃗ =
1

ϵ0
ρ. (66)

I.e., for any location x⃗ ∈ R3, ∇⃗ · E⃗(x⃗) = 1
ϵ0
ρ(x⃗) holds.

If E⃗ depends only on x, E(x + dx) = E(x) + ρ(x)
ϵ0

dx. This is a concrete
example of locality: the electric field at x+dx is determined by the electric field
and the source at x. Since we have three unknown functions Ex, Ey, and Ez,
with one condition (66), the system is still underdetermined.

Remark 14 (Magnetic Gauss’ Law). Similarly:

∇⃗ · B⃗ = 0 (67)

since no discovery yet of a magnetic monopole.

Definition 2.4 (Time-varying Gauss’ Laws). We suppose, for any x⃗ ∈ R3 and
t ∈ R:

∇ · E⃗(x⃗, t) =
1

ϵ0
ρ(x⃗, t)

∇ · B⃗(x⃗, t) = 0

(68)

for time-varying fields and charge density.

Definition 2.5 (Faraday-Lenz Law). Consider a surface are A with its normal

vector n⃗. Define A⃗ := An⃗. Through this directed are A⃗, let

Φ := B⃗ · A⃗ =
∣∣∣B⃗∣∣∣ ∣∣∣A⃗∣∣∣ cos θ, (69)

where θ is the angle between A⃗ and B⃗. Along the boundary ∂A,

emf = − d

dt
Φ, (70)

where the orientation of ∂A is determined by the RHR. With this important
negative sign – Lenz’ law – it is called Faraday’s law of induction.
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Remark 15 (Differential Form). Recalling emf is the work along the boundary
∂A per charge and the electric field is the force per charge:

emf =

∫
∂A

E⃗ · dr⃗. (71)

Then, we obtain: ∫
∂A

E⃗ · dr⃗ = − d

dt

∫
A

B⃗ · n⃗dS. (72)

Applying Stokes’ theorem,∫
A

∇⃗ × E⃗ · n⃗dS = −
∫
A

∂tB⃗ · n⃗dS. (73)

Hence, we conclude ∇⃗ × E⃗ + ∂tB⃗ = 0⃗.

Remark 16. The static electric field is completely determined by:

∇⃗ · E⃗(x⃗) =
1

ϵ0
ρ(x⃗)

∇⃗ × E⃗(x⃗) = 0⃗

(74)

for each x⃗ ∈ R3. It is worth mentioning that the rotation-free condition ensures
that the underlying force is conservative since the work done by an arbitrary
closed path is zero.

Definition 2.6 (Amper̀e’s Law). Consider a disc D with radius r > 0 at the

origin 0⃗ ∈ R3. Along with a steady current I⃗ at the center of D, consider
the magnetic flux

∫
|x⃗|=r

B⃗(x⃗)dr⃗ along the boundary of S. Experimentally, one

shows that this integral is proportional to
∣∣∣I⃗∣∣∣:∫

|x⃗|=r

B⃗(x⃗) · dr⃗ = µ0

∣∣∣I⃗∣∣∣ , (75)

where the boundary of D is expressed as |x⃗| = r with µ0 > 0. Introducing the
current density i⃗: ∣∣∣I⃗∣∣∣ = ∫

|x⃗|≦r

i⃗(x⃗) · n⃗(x⃗)dS (76)

Applying Stokes’ theorem,∫
|x⃗|≦r

∇⃗ × B⃗(x⃗) · n⃗(x)dS =

∫
|x⃗|=r

B⃗(x⃗) · dr⃗ = µ0

∫
|x⃗|≦r

i⃗(x⃗) · n⃗(x⃗)dS. (77)

Hence, ∇⃗ × B⃗(x⃗) = µ0⃗i(x⃗) for each x⃗ ∈ R3.

Remark 17. The magnetic flux density around I⃗ is proportional to
∣∣∣I⃗∣∣∣ and

inversely proportional to the distance r. Geometrically, it is rather proportional
to the circumference: ∣∣∣B⃗∣∣∣ = µ0

∣∣∣I⃗∣∣∣
2πr

. (78)

14



Definition 2.7 (Charge-Current Conservation). Since the normal vector is from
in to out, for any volume V , the macroscopic relation dQ

dt = −I via out-flow I
becomes:

d

dt

∫
V

ρd3x = −
∫
∂V

i⃗ · n⃗dS. (79)

Applying Gauss’ theorem,∫
V

∂tρ(x⃗)d
3x = −

∫
V

∇⃗ · i⃗(x⃗)d3x (80)

and, hence, we obtain the continuity equation ∂tρ+ ∇⃗ · i⃗ = 0.

Definition 2.8 (Maxwell’s Displacement Current). Let x⃗ ∈ R3 and t ∈ R. For
the static Amper̀e’s Law ∇⃗ × B⃗(x⃗) = µ0⃗i(x⃗), Maxwell introduced, so-called,
displacement current density:

∇⃗ × B⃗(x⃗, t) = µ0⃗i(x⃗, t) + µ0 ϵ0∂tE⃗(x⃗, t)︸ ︷︷ ︸ (81)

Applying ∇⃗· from their left, by Remark 10, we conclude:

∇⃗ ·
(
∇⃗ × B⃗(x⃗, t)

)
= 0 = µ0

(
∇⃗ · i⃗(x⃗, t) + ϵ0∂t∇⃗ · E⃗(x⃗, t)︸ ︷︷ ︸

)
= µ0

(
∇⃗ · i⃗(x⃗, t) + ϵ0∂t

ρ(x⃗, t)

ϵ0

)
.

(82)

Therefore, we obtain the continuity equation. Without the displacement cur-
rent, we would have ∇⃗ · i⃗(x⃗, t) = 0 and, hence ∂tρ(x⃗, t) = 0, which is in general
not the case.

Definition 2.9 (Maxwell-Amper̀e Law with c). Since

[ϵ0] = [1/k] =
(
Nm2 C−2

)−1
= A2 s4 kg−1 m−3 (83)

and

[µ0] =
[B] m

A
(84)

where [B] = N
Cms−1 = kgA−1 s−2, we conclude

[µ0ϵ0] =
kg

A s2
ms−1 A2 s4

kgm−3
=

(
1

m/sec

)2

. (85)

That is,

c :=
1

√
µ0ϵ0

> 0 (86)

has m s−1. It is worth mentioning that [x] = [y] = [z] = [ct] = m. With this
constant c, Maxwell-Amper̀e Law is:

∇⃗ × B⃗(x⃗, t)− 1

c2
∂tE⃗(x⃗, t) = µ0⃗i(x⃗, t). (87)
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Remark 18 (Tesla). We define T = kgA−1 s−2 = Wbm−2 for the magnetic flux
density.

Remark 19. It is worth mentioning that

[E] = NC−1 = kgm s−2 A−1 s−1

= kgm s−3 A−1

[cB] = m s−1kg s−2 A−1

= kgm s−3 A−1

(88)

Definition 2.10 (Maxwell’s Equations). Collecting the outcomes from Defini-
tion 2.4, Definition 2.5, and Definition 2.9, we obtain:

∇⃗ · E⃗ =
1

ϵ0
ρ

∇⃗ · B⃗ = 0

∇⃗ × E⃗ + ∂tB⃗ = 0⃗

∇⃗ × B⃗ − 1

c2
∂tE⃗ = µ0⃗i.

(89)

As a charge conservation, see Definition 2.7, we have the continuity equation:

∂tρ+ ∇⃗ · i⃗ = 0. (90)

Remark 20. Applying the identity in Remark 10, we obtain:

∇⃗ ·
(
∇⃗ × B⃗

)
− µ0ϵ0∂t

(
∇⃗ · E⃗

)
= 0− µ0ϵ0∂t

(
∇⃗ · E⃗

)
= µ0∇⃗ · i⃗ = −µ0∂tρ, (91)

where the last equation is due to the charge-current conservation in Defini-
tion 2.7. Thus, we obtain:

∂t

(
ϵ0∇⃗ · E⃗ − ρ

)
= 0. (92)

At the time origin t = 0, if ϵ0∇⃗ · E⃗(x⃗, 0) − ρ(x⃗, 0) = 0 is chosen as the initial

condition, so is ϵ0∇⃗ · E⃗(x⃗, t)− ρ(x⃗, t) = 0 for any t > 0.

Remark 21. For the charge density ρ and the current density i⃗ under electro-
magnetic field E⃗ and B⃗, the Lorentz’ force density is given by f⃗ = ρE⃗ + i⃗× B⃗.
Maxwell’s equations in (89) with the Lorentz’ force on a moving charge q with
velocity v⃗:

f⃗q = q
(
E⃗ + v⃗ × B⃗

)
(93)

completely characterize classical electrodynamics.
Consider a charge q > 0 at rest on a system S under uniform By. Since q

does not move, q feels no external force. What if we observe the same q from
another system S′ that is moving backward along x-direction:
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x′

y’

z′

S′

q

x

y

z

S

By

−v

Relative to S′, q is under motion with velocity v along x′-direction. Hence, q
feels force; according to 93, the acceleration is z′-direction:

• Relative to S:

No force on z-direction.

• Relative to S′:

Along z′-direction, q feels magnetic force qvBy.

Such a contradiction leads us to the special theory of relativity; the “assump-
tion” that the magnetic field By remains in S′ is wrong. Electric fields and
magnetic fields are not independent, forming a unified concept of electromag-
netic fields.

Definition 2.11 (Electromagnetic Energy Density). We call:

u :=
ϵ0
2

∣∣∣E⃗∣∣∣2 + 1

2µ0

∣∣∣B⃗∣∣∣2 (94)

the electromagnetic energy density.

Remark 22 (Electric Energy Stored in a Capacitor). Consider a parallel plate
capacitor with area A and spacial distance d. As the stored charge Q is propor-
tional to the potential difference V , we let C be the capacitance via Q = CV .
Under the potential difference V , the stored energy is given by:

U =

∫ CV

q=0

q

V
dq =

1

2
CV 2. (95)

Let E be the electric field strength in the capacitor:

• Gauss’s Law

Across one plate, Gauss’s law per unit area implies:

E − 0 =
1

ϵ0

Q

A
(96)

Hence, Q = ϵ0AE.
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• Recalling that voltage is the energy per unit charge:

V = Ed. (97)

Then:

U =
1

2
QV =

1

2
ϵ0AEEd =

ϵ0
2
E2Ad, (98)

where Ad is the physical volume of the parallel plate capacitor. Hence, the
energy density is given by ϵ0

2 E
2.

2.3 Maxwell’s Equations in Geometric Algebra

Definition 2.12 (Electromagnetic Field Strength Tensor). Recalling §1.2.4, we
define:

F := E⃗ +
√
−1cB⃗, (99)

where √
−1 := e1e2e3. (100)

Remark 23. Both E⃗ and B⃗ are in R3 are conventionally represented as:

E⃗ = e1Ex + e2Ey + e3Ez

B⃗ = e1Bx + e2By + e3Bz

(101)

Since the coordinate system, in particular the right-hand rule e3 = e1 × e2 is
our choice, not the nature’s, the description should not depend on the specific
choice. Under space-inversion, also known as the prity-inversion – the flip in the
sign of one spatial coordinate – ordinary vectors must flip its sign, for instance,
in (93) of the Lorentz’ force, say force, electric fields, and velocity vector:

f⃗q 7→ −f⃗q

E⃗ 7→ −E⃗

v⃗ 7→ −v⃗

(102)

However, B⃗ 7→ +B⃗ remains, otherwise, we have a relative sign difference be-
tween two terms. This property ensures that the appropriate representation for
the magnetic flux density is rather via 2-vectors. With

√
−1 := e1e2e3, B⃗ ∈ R3

becomes a 2-vector:

√
−1cB⃗ = c (e2e3Bx + e3e1By + e1e2Bz) . (103)

Since the parity-inversion is e1 7→ −e1, e2 7→ −e2, and e3 7→ −e3, we obtain the
appropriate sign under the parity-inversion,

√
−1cB⃗ 7→

√
−1cB⃗:

f⃗q = q

(
E⃗ − v⃗

c
∧
√
−1cB⃗

)
. (104)
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Lemma 2.1. We claim:
e0E⃗ = −E⃗e0 (105)

and
e0
√
−1cB⃗ =

√
−1cB⃗e0. (106)

Proof. Recalling (47),

e0E⃗ = e0e1Ex+e0e2Ey+e0e3Ez = −e1e0Ex−e2e0Ey−e3e0Ez = −E⃗e0, (107)

and

e0
√
−1cB⃗ = ce0 (e2e3Bx + e3e1By + e1e2Bz)

= +c (e2e3Bx + e3e1By + e1e2Bz) e0

=
√
−1cB⃗e0.

(108)

■

Theorem 2.1. Maxwell’s equations in (89) can be written as:

□F = cµ0J, (109)

where □ =
(

1
c∂t − ∇⃗

)
e0 is the d’Alambertian in Definition 1.6 and J :=(

cρ+ i⃗
)
e0 is the charge-current multivector.

Proof. The right-hand side is:

cµ0J =
(
c2µ0ρ+ cµ0⃗i

)
e0 =

(
1

ϵ0
ρ+ cµ0⃗i

)
e0. (110)

Recalling that it is the geometric product, by Lemma 2.1:

□F =

(
1

c
∂t − ∇⃗

)
e0

(
E⃗ +

√
−1cB⃗

)
=

(
1

c
∂t − ∇⃗

)(
−E⃗ +

√
−1cB⃗

)
e0

=

(
−1

c
∂E⃗ +

√
−1∂tB⃗ + ∇⃗E⃗ −

√
−1c∇⃗B⃗

)
e0

=

(
−1

c
∂E⃗ +

√
−1∂tB⃗ +

(
∇⃗ · E⃗ + ∇⃗ ∧ E⃗

)
−

√
−1c

(
∇⃗ · B⃗ + ∇⃗ ∧ B⃗

))
e0.

(111)
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By Lemma 1.4,

□F =

(
−1

c
∂E⃗ +

√
−1∂tB⃗

+
(
∇⃗ · E⃗ +

√
−1∇⃗ × E⃗

)
−

√
−1c

(
∇⃗ · B⃗ +

√
−1∇⃗ × B⃗

))
e0

=
(
∇⃗ · E⃗ −

√
−1c∇⃗ · B⃗

+

(
−1

c
∂E⃗ + c∇⃗ × B⃗

)
+

√
−1

(
∂tB⃗ + ∇⃗ × E⃗

))
e0.

(112)

Comparing the components, we obtain the desired results, since the right-hand
side is:

cµ0J =

(
1

ϵ0
ρ+

√
−10 + cµ0⃗i+

√
−1⃗0

)
e0. (113)

■

Remark 24 (Continuity Equation). The continuity equation in Definition 2.7 is
expressed as the following 4-divergence □ · J = 0, since

□ · J =

(
1

c
∂t − ∇⃗

)
e0 ·

(
cρ+ i⃗

)
e0 = ∂tρ−

(
−∇⃗ · i⃗

)
= 0, (114)

recalling the “almost-minus metric” in Remark 11.

2.4 Some Applications

2.4.1 Energy and Momentum – Poynting’s Theorem

Theorem 2.2 (Poynting’s Theorem). The rate of energy loss of fields per unit
time −∂tu is:

−∂u

∂t
= ∇⃗ · S⃗ + E⃗ · i⃗, (115)

where u is defined in Definition 2.11, S⃗ := 1
µ0
E⃗ × B⃗ is called Poynting vector,

∇⃗ · S⃗ is energy out-flow per unit time, and E⃗ · i⃗ represents the rate of the work
done by fields.

Proof. The work done by electromagnetic fields per unit time satisfies:

P :=

∫ (
E⃗ + v⃗ × B⃗

)
· ρv⃗d3x, (116)

where v⃗ represents the velocity vector of ρv⃗d3x.

• Since
(
v⃗ × B⃗

)
· v⃗ = 0,

P =

∫
E⃗ · ρv⃗d3x =

∫
E⃗ · i⃗d3x. (117)

Note that B⃗ provides no work.
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• Recalling Definition 2.9, Remark 10, and Definition 2.5:

P =

∫
E⃗ · 1

µ0

(
∇⃗ × B⃗ − µ0ϵ0∂tE⃗

)
d3x

=

∫
1

µ0

((
∇⃗ × E⃗

)
· B⃗ − ∇⃗ ·

(
E⃗ × B⃗

))
d3x

−
∫

ϵ0E⃗ · ∂tE⃗d3x

=

∫
1

µ0

((
−∂tB⃗

)
· B⃗ − ∇⃗ ·

(
E⃗ × B⃗

))
d3x

−
∫

ϵ0E⃗ · ∂tE⃗d3x.

(118)

Hence, we obtain the integral form:∫
E⃗ · i⃗d3x = − d

dt

1

2

∫ (
1

µ0

∣∣∣B⃗∣∣∣2 + ϵ0

∣∣∣E⃗∣∣∣2)d3x− 1

µ0

∫
∇⃗ ·

(
E⃗ × B⃗

)
d3x (119)

Since this relation is the case for any volume, we conclude E⃗ ·⃗i = −∂tu−∇·S⃗. ■

Remark 25. Observe:

Fe0F =
(
E⃗ +

√
−1cB⃗

)
e0

(
E⃗ +

√
−1cB⃗

)
=

(
E⃗ +

√
−1cB⃗

)(
−E⃗ +

(
−
√
−1

)
c
(
−B⃗

))
e0

=

(
−
∣∣∣E⃗∣∣∣2 +√

−1cE⃗B⃗ −
√
−1cB⃗E⃗ − 1

µ0ϵ0

∣∣∣B⃗∣∣∣2) e0

=

(
− 2

ϵ0

(
ϵ0

∣∣∣E⃗∣∣∣2 + 1

µ0

∣∣∣B⃗∣∣∣2)+
√
−1c2E⃗ ∧ B⃗

)
e0

= − 2

ϵ0
ue0 +

√
−1c2µ0S⃗

(120)

i.e.,

cu+ S⃗ = −cϵ0
2

Fe0F. (121)

If we take 4-divergence:

□ ·
(
cu+ S⃗

)
e0 = ∂tu+ ∇⃗ · S⃗ = −E⃗ · i⃗. (122)

If we define T0 := ϵ0
2 Fe0F ,

c□ · T0 = FJ. (123)

In particular, if no source exists, □ · T0 = 0; recalling Remark 24, the direction
of energy transfer is along S⃗.
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2.4.2 Plane Wave Solution and Speed of Light

Consider Maxwell’s equation with no source, namely ρ = 0 and i⃗ = 0⃗:

□F = 0. (124)

Since

□ =

(
1

c
∂t − ∇⃗

)
e0 = e0

(
1

c
∂t + ∇⃗

)
, (125)

it suffices to consider: (
1

c
∂t + ∇⃗

)
F = 0. (126)

Assume the following form of a “trial” solution; adjusting parameters in
this solution, we will obtain a specific form of solution, the so-called plane-wave
solution:

F

(
ct
r⃗

)
= A exp

(√
−1

(
k⃗ · r⃗ − ω

c
ct
))

, (127)

where

• the amplitude A is a multivector of timespace;

•
(
ct
r⃗

)
is an event, namely:

– t is an arbitrary time;

– r⃗ =

x
y
z

 is an arbitrary point of the space;

• k⃗ is a constant vector in R3;

• ω is a constant scalar.

Applying
(

1
c∂t + ∇⃗

)
, we obtain:

0 =
(
−ω

c
+ k⃗

)
A exp

(√
−1

(
k⃗ · r⃗ − ωt

))
. (128)

Hence,
(
−ω

c + k⃗
)
A = 0. Recalling (99), we expect F to have both vector and

pseudo vector parts. So we try A = V⃗ +
√
−1cW⃗ form, where both V⃗ and W⃗

are vectors in R3:

0 =
(
−ω

c
+ k⃗

)(
V⃗ +

√
−1cW⃗

)
= −ω

c
V⃗ −

√
−1ωW⃗ + k⃗V⃗ +

√
−1ck⃗W⃗ .

(129)

Collecting the same grade terms, we obtain:

0 = k⃗ · V⃗ +
(
−ω

c
V⃗ +

√
−1ck⃗ ∧ W⃗

)
+
(
k⃗ ∧ V⃗ −

√
−1ωW⃗

)
+
√
−1k⃗ · W⃗ . (130)
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• Scalar part: k⃗ · V⃗ = 0. That is, k⃗ ⊥ V⃗ in R3.

• Pseudo scalar part: k⃗ · W⃗ = 0. That is, k⃗ is “tangential” to the 2-vector√
−1W⃗ .

• Vector part: −ω
c V⃗ +

√
−1ck⃗ ∧ W⃗ = 0. That is, V⃗ =

√
−1 c2

ω k⃗ ∧ W⃗ =

− c2

ω k⃗ × W⃗ if ω ̸= 0.

• Pseudo vector part: k⃗ ∧ V⃗ −
√
−1ωW⃗ = 0. That is, the 2-vector is√

−1W⃗ = 1
ω k⃗ ∧ V⃗ if ω ̸= 0.

See Lemma 1.4. For later analysis, we assume ω ̸= 0.
Applying Lemma 1.4, W⃗ = 1

ω k⃗ × V⃗ , we conclude that k⃗, V⃗ , and W⃗ form a

right-hand system. In other words, both k⃗ and V⃗ are on
√
−1W⃗ with k⃗ ⊥ V⃗ .

Theorem 2.3. The phase speed ω

|k⃗| is c.

Proof. Since V⃗ = c2

ω W⃗ × k⃗ and W⃗ = 1
ω k⃗ × V⃗ , we have

V⃗ =
c2

ω

(
1

ω
k⃗ × V⃗

)
× k⃗ (131)

Since they are perpendicular,

V⃗ =
c2

ω2

∣∣∣⃗k∣∣∣2 V⃗ . (132)

Hence c2

ω2

∣∣∣⃗k∣∣∣2 = 1. ■

Remark 26. For simplicity, if we choose k⃗ = ω
c e1, the phase in (127) becomes:

√
−1

(ω
c
x− ωt

)
(133)

That is, during t 7→ t+ dt, if x 7→ x+ dx, we obtain ω
c dx− ωdt = 0:

dx

dt
= c. (134)

Theorem 2.4. The energy and momentum density of the plane wave solution

satisfies u = ϵ0

∣∣∣V⃗ ∣∣∣2 and S⃗ = cu k⃗

|k⃗| . The energy density is the amplitude squared,

and the momentum is in the propagation direction.

Proof. The trial function (127) with A = V⃗ +
√
−1cW⃗ becomes

F

(
ct
r⃗

)
=

(
V⃗ +

√
−1cW⃗

)
exp

(√
−1

(
k⃗ · r⃗ − ωt

))
(135)
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Since e0 is anti-commutative,

e0F

(
ct
r⃗

)
=

(
−V⃗ +

√
−1cW⃗

)
exp

(
−
√
−1

((
−k⃗

)
· (−r⃗)− ωt

))
e0

=
(
−V⃗ +

√
−1cW⃗

)
exp

(
−
√
−1

(
k⃗ · r⃗ − ωt

))
.

(136)

Hence,

Fe0F =
(
V⃗ +

√
−1cW⃗

)
exp

(√
−1

(
k⃗ · r⃗ − ωt

))
e0

(
−V⃗ +

√
−1cW⃗

)
exp

(
−
√
−1

(
k⃗ · r⃗ − ωt

))
=

(
V⃗ +

√
−1cW⃗

)(
−V⃗ +

√
−1cW⃗

)
= −

∣∣∣V⃗ ∣∣∣2 − c2
∣∣∣W⃗ ∣∣∣2 +√

−1c
(
V⃗ W⃗ − W⃗ V⃗

)
= −

∣∣∣V⃗ ∣∣∣2 − c2
∣∣∣W⃗ ∣∣∣2 +√

−1c2V⃗ ∧ W⃗

= −
(∣∣∣V⃗ ∣∣∣2 + c2

∣∣∣W⃗ ∣∣∣2)− 2cV⃗ × W⃗

(137)

As shown in Remark 25 in Theorem 2.2:

cu+ S⃗ = −cϵ0
2

Fe0F = −cϵ0
2

(
−
(∣∣∣V⃗ ∣∣∣2 + c2

∣∣∣W⃗ ∣∣∣2)− 2cV⃗ × W⃗

)
(138)

Hence, we conclude:

u =
ϵ0
2

(∣∣∣V⃗ ∣∣∣2 + c2
∣∣∣W⃗ ∣∣∣2)

S⃗ = c2ϵ0V⃗ × W⃗ .

(139)

Since W⃗ =
|k⃗|
ω

k⃗

|k⃗| × V⃗ = 1
c

k⃗

|k⃗| × V⃗ , (127) becomes:

F

(
ct
r⃗

)
=

V⃗ +
√
−1

k⃗∣∣∣⃗k∣∣∣ × V⃗

 exp
(√

−1
(
k⃗ · r⃗ − ωt

))
, (140)

Then both energy density and Poyinting vector are given by:

u = ϵ0

∣∣∣V⃗ ∣∣∣2
S⃗ = cϵ0

∣∣∣V⃗ ∣∣∣2 k⃗. (141)

■
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