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0 Definitions and Basic Properties

This note explores basic group theory, following .

0.1 Groups — Multiplicative Groups
Definition 0.1 (Groups). A group is given by

(G.o1, ()7,
where

e (G is a set and o is a binary product

0: G x G — G5(92,91) ¥ g2091-



e (G,0,1) forms a monoid. Namely, G is a non-empty set, o is an associative
binary product, and 1 € G is a multiplicative identity such that

gol=g=gol, (3)
for each g € G. Note that the associativity is expressed by
gso(g2091) = (930 92) o1 (4)
for any ¢1, 92,93 € G.
1

e The unary operation (1)~!: G — G returns the multiplicative inverse g~
of a given g € G such that

g log=1l=gog " (5)
Lemma 0.1. Let (G, o, 1, (,)_1) be a group.
o Ife € G satisfies
goe=g=cog (6)
for each g € G, then e = 1. That is, the identity element is unique.

1

e For each g € G, the inverse g~ is unique.

e For each g € G, (g_l)_1 =g.

Proof. Since 1 € G is an multiplicative identity, loe = e = eo1; e € G satisfies

the same properties, we conclude e = 1oe = 1. Let g € G. Suppose ¢’ € G

satisfies ¢’ 0 g = g = go ¢’. Applying ¢!, we obtain ¢’ = g~'. We, then, have
-1 1 -1 : -1y~ 1 _

g tog=1=g og,showmg(g ) =g. O

Definition 0.2 (Subgroups). A subset H C G of a group (G,o,1,(-)7!) is

called a subgroup of G iff H forms a group and H is closed under group opera-
tions:

e For any hy,ho € H, hoohy € H.
e The identity 1 € Gisin H, 1 € H.
e For any h € H, the inverse is in H, h~! € H.

A trivial subgroup is the singleton {1} C G; another example is G itself. We
denote a subgroup H of G by H < G.

Lemma 0.2 (Subgroup-Test). Let (G,O,l,(,)_l) be a group. A mon-empty
subset O £ H C G is a subgroup iff ho o hy € H for any h1,hs € H.

Proof. (=) If H< G and hy,hy € H, then hy ' € H and hence hyoh, ' € H.

(<) There is at least one element in H. Select h € H. Then hoh™! =1 € H.
For any k € H, k™' =10k~! € H. Suppose hi,ho € H. Then hy ! € H, and
hence h1hy = hy (hgfl)_l € H. Since the underlying o is an associative binary
product of G, (H,o,1,(-)~") forms an group. O



From this point, the group operation can be written without the symbol o;
namely, for g1, g2 € G, we write gog; instead of g5 o ¢g;.

Definition 0.3 (Group Homomorphisms). Let G and H be groups. A map
0: G — H is called a group homomorphism iff 6 (g291) = (6g2) (6g1).

e If a group homomorphism 6: G — H is injective:
091 =092 = g1 = g2 (7)
for g1, 92 € G, then 6 is called a mono.
e If a group homomorphism 6: G — H is subjective:
0G = H, (8)
then 6 is called an epi.
A group homomorphism is called an isomorphism iff it is both monic and epic.
Lemma 0.3. Any group homomorphism preserves the identity and inverses.

Proof. Let 8: G — H be a group homomorphism. Since 15 o1lg = 1, we have
(01¢) o (A1g) = 1. Applying the inverse (01g) " of 01¢ € H, we obtain
01g = 1. Let g € G and consider the inverse g=! € G. Since g log=1g =
gog™!, if we apply 6, we have (6g=') o (8g) = 15 = (0g) o (6g~*). Since the
inverse is unique by Lemma fg~1 = (Gg)fl. O
Lemma 0.4. A group homomorphism 0: G — H is monic iff the kernel is
singleton, 0 1y = {1¢}.

Proof. (=) Recall the very definition:
9<—1H IZ{QEG|9g:1H}. (9)

The kernel is non-empty, 1 € 05 1y, since 01g = 1g. Let g € 65 15. Then
0g = 1g = 01¢. Since 0 is injective, g = 1, and hence 6 15 = {1¢}.
(<) Conversely, suppose 0 1y = {1g}. Let ¢1,92 € G and assume fg; =

fgs for g1,9o € G. Then 1g = (0g2) (0g1)" = (6g2) (0917") = 0 (g20171).
Hence, gog1 ' € 0515 = {1¢}, and we have g; = g5 since gog1 * = 1. O

Theorem 0.5. Both image and kernel of a group homomorphism are subgroups.

Proof. Let 0: G — H be a group homomorphism. Let hy,he € 0G. There are
g1, g2 € G such that hy = 0g; and hy = 0gs. Since g2g1 ' € G,

hohy ™t =65 (8g1) " =0 (92917") € 6G. (10)

By Lemma (0.2} 6G < H.
Let g1,92 € 6 1. Then 6g; = g2 and, hence

0 (g2917") = (0g2) (0g1) " = 1. (11)
By Lemma[0.2 61 < G. O



0.2 Abelian Groups — Additive Groups

Definition 0.4 (Abelian Groups). Let (G, o,1, (,)_1) be a group. Two elements
a,b € G are commutative iff a 0 b = bo a; G is called an abelian group iff any
pair is commutative. We use + sign for the commutative binary operator, and
0 for the additive identity, and —g for the additive inverse of g € G.

Definition 0.5 (Free Group). An abelian group (A, +,0, —(-)) is called free iff
there is B C A such that every element a € A has a unique representation

o= mb, (12)

beB

where {n, € Z | b € B} are all equal to zero but finitely many. In other words,
the “sequence” is eventually zero. Such a subset B C A, which generates the
given abelian group A, is called a basis for A.

Remark (Construction). Let S be a set. We will construct a free abelian group
with basis S.
Let Fg be a set of functions from S to integers Z such that f € Fg iff

fs =0 for all but finitely many s € S. (13)

Then the zero map is in Fg, 0 € Fs. For any f,g € Fs, f + g is defined
componentwisely, (f + g)s = fs + gs for each s € S. The additive inverse of
f is also defined componentwisely, (—f)s = —(fs). By construction, the set of
characteristic functions forms a basis for Fg:

B:={xu|teS} =S5, (14)
where
0 s#t
X{t}5 = {1 st (15)

For each f € Fg, let Iy C S be a finite subset such that fs # 0 iff s € Iy. Then
any f € Fg is written as f = Ztelf (f)xqe-

We denote O for the abelian group with empty basis; since the empty sum
is the additive identity, the unique element in O is O:

0= ({0}7"_707_(*))' (16)

Remark (Extension “by Linearity”). If an abelian group (A4, +,0,—(_)) is free
with basis B and C is an abelian group, then any map 6: B — C can be uniquely
extended to an abelian group homomorphism 6#: A — C by linearity, namely
for each a € A with its unique representation ), 5 nib, 0a =3, . 5 1y (6D).



1 Normal Subgroups and Quotient Groups

1.1 Normal Subgroups

Definition 1.1 (Normal Subgroups). Let G be a group. A subgroup N < G is
called a normal subgroup iff gNg=' C N for each g € G, where

gNg™! = {gng_1 | n e N} . (17)
We denote N <1 G for a normal subgroup H of G.
Lemma 1.1. The kernel of a group homomorphism is a normal subgroup.

Proof. Let §: G — H be a group homomorphism. By Theorem [0.5] 61 < G.
Let g € G and k € 6<1. Then gkg~! € 0* 1 since

0 (gkg™") = (69)1(89) " = 1. (18)
Therefore, g (1< 1) g~ C 6 1. O

<
Lemma 1.2. Let G be a group. If N<G and N < M < G, T ,
group. I N(—<>MCT>G

then N <1 M holds.

Proof. Since N < M, it suffices to show its normality. Let m € M and n € N.
Since N <G and M < G, m € G and hence, mnm ™! € N. That is, nNm™! C
N. O

Theorem 1.3. Let N <G be a normal subgroup. If we define ~ by
g1~ g2 gag1 T EN (19)

then ~ is an equivalence relation on G relative to IN.

Remark. For each g € G, let
9 ={g' €Glg ~g} (20)

be the set of equivalent elements represented by ¢g. Let G/~ = {[g] | g € G}
denote the set of equivalent classes relative to N <1 G.

Proof. Let g € G. Since gg~' =1¢€ N, g ~ g. Hence, ~ is reflexive.
Suppose g1 ~ go for gi,go € G. Then n := gg1~' € N. Since N is a
subgroup of G, n=! € N, namely n~=! = g1go~! € N. Hence, go ~ g1, and ~ is

symmetric.
Finally, suppose g1 ~ g2 and go ~ g3. Then gzg; ! € K, since gag1 ' € N,
g392"1 € N and g3g1 7! = g392" 19392 ". Therefore, ~ is transitive. O

Corollary 1.3.1. G/~ with respect to G < G is a singleton.

Proof. All elements are equivalent to 1 € G since g = g1~ ! € G for each g € G.
Hence [1] = {g € G | g ~ 1} = G is the unique element. O



1.2 Quotient Groups

Lemma 1.4. Let G be a group and N <G be a normal subgroup.
e For each g € G, gN = Ng = [g].

o For gi,92 € G, [91][92] = [9192].

Remark. Let G/N denote the set G/~ = {[g] | g € G} of equivalent classes with
respect to N < G with the binary product [¢1][g2] = [9192] for [g1], [g2] € G/N.

Proof. Let g € G. For each n € N, since N < G, k := gng~' € N. That is,
gn = kg € Ng, and hence gN C Ng. Conversely, for each n € N, as g~! € G,
h =g 'ng € N. It follows Ng C gN. Therefore, gN = Ng holds.
Let g € G and consider [g] € G/~. For each ¢’ € [g], there exists n € N with
n = g'g~!. Then, [g] C Ng since for each ¢’ € [g], ¢ = ng € Ng. Conversely,
consider gk € gN. As shown above, gN = Ng, there must be some h € N such
that gk = hg. Therefore, h = (gk)g~! € N, showing gk ~ g, and gk € [g].
Hence, we conclude [g] = Ng
Finally, consider the binary operation. Let g1, 92 € G.
[92][91] = {h2h1 | ha € Ng2 A1 € Nga}
= {n2ganig1 | n1,n2 € N} (21)

= {n2 (g2n1927") 9291 | n1,n2 € N}
Since N < G, (9277,19271) € N for each go € G and ny; € N. Hence, we obtain
[92][91] = {ng2g1 | n € N} = N(g291) = [921]. (22)
O

Theorem 1.5 (Quotient Groups). Let G be a group and N < G be a normal
subgroup. Then G/N forms a group:

(G/N,o,N,[()71), (23)
where the binary product o is defined by [g1] o [92] = [g192] for [g1], [g2] € G/N.

Proof. Since the binary product is essentially the binary product of G, it suffices
to show the identity and inverses.

o N = lG/N
Consider [g] for g € G. By Lemma [g] = gN, and hence

[9IN = gNN = gN = [g]. (24)

Similarly, one can show that N[g] = [g].



o [g 7" =[g7"]
Consider [g] for g € G. By Lemma

9l [g" ] =[997'] =] =N=[g7"] lg]. (25)
Since the inverse is unique, by Theorem 0.1} [¢g7!] is the desired inverse
of [g].
We call the group G/N for N <1 G the quotient group of G modulo N. O

1.3 Group Homomorphisms and Quotient Groups

Theorem 1.6. Let G and H be groups. For a group homomorphism 6: G —
H, as shown in Lemma the kernel forms a mormal subgroup, 01 < G.
Conversely, if N <G, then the canonical projection

m: G —= G/N;g— |g] (26)
s an epi with 71 = N.

Proof. Suppose N <1G. For any [g] € G/N, if we choose ¢’ € [g], 7¢g' = [¢] = |9]
since ¢’ ~ g. Hence, the canonical projection 7 is surjective. For g1,¢92 € G, it
follows

7 (9291) = [9201] = [92] [91] = (7g2) (g1) (27)

Hence, 7 is a group homomorphism. Finally, we have 751 = N since
{9eGllgl=N=N1}={geGlg~1}={geG|g=gl"  eN}. (28
O

Theorem 1.7. Let G and H be groups, and 8: G — H be a group homomor-
phism. Suppose N <G and N C 0 1. Then, there exists a unique mediator
0: G/N — H such that 0[g] = g for each g € G. That is, the following diagram

s commutative:

G49>H

W\L / Qom=26. (29)
El7

G/N

We also have 0(G/N) = 60G and 8 1 = (6<1) /N.

Proof. If g ~ ¢’ relative to N <1 G, there is some n € N such that n := g'g~!

and
09’ = 0 (ng) = (6n) (8g) = 10g = by, (30)

since n € N C < 1. Thus 6: G/N — H;[g] — g is a well-defined map among
the corresponding sets. Since 6 is fully determined in terms of the given group
homomorphism 6, it is unique.



The induced map §: G/N — H is a group homomorphism, since @ is a group
homomorphism:

5([92] [91]) = 9[9291] = 9(9291) = (0g2) (091) = (5[92]) (5[91]) (31)

for [g1], [92] € G/N. The images coincide:
0G={heH|3geG:h=0g=0[g]} =0(G/N). (32)

Let K :=01<G. Since N < K <G and N <1 G, we may apply Lemma [1.2]
N<K. Hence, K/N = (1) /{V{_ls a quotient group. For any g € Ci,(_[g] =gN €
K/N ift[g] = fg=11iff [g €6 1. Thatis, (61)/N=K/N=0 1. O
Corollary 1.7.1. The induced group homomorphism 0: G/N — H is an iso-
morphism iff 6 is an epi and N = 0 1.

Proof. (=) Suppose 0 is an isomorphism. Since @ is epic, so is @ since
G =0(G/N) = H. (33)

By hypothesis, N C 8 1; to show the other inclusion, let k € < 1:

k] = 0k =1 (34)

Since 6 is monic, by Lemma 071 = {lg/N}, where 1,5y = N by Theo-
rem Hence, [k] = N, i.e, k€ N.

(<) Suppose 6 is epic and N = < 1. Then 0 is epic since §(G/N) = 0G =
H. Recalling (6<1)/N = 561, and by hypothesis N = 61, the kernel is a
singleton by Corollary 1= {N} = {1(;/N}. O

Theorem 1.8 (First Isomorphic Theorem). A group homomorphism 6: G — H
induces an isomorphism between G /01 and 0G.

Proof. The corestriction #: G — 0G is an epi. Thus, the induced group homo-
morphism via Corollary

0: G/N = 0G (35)

is an isomorphism, where N := 01 < G. O

1.4 Exact Sequences

Definition 1.2 (Exact Sequences). A pair of adjacent group homomorphisms

F Y% G % Hiscalled exact iff OF = 1. A sequence of group homomorphisms
is called exact iff every adjacent pair of homomorphisms is exact. An exact
sequence of the following form is called short exact:

0

O F G- m 10) (36)

where O — F is essentially an inclusion map {lp} C F and H — O is a
constant map toward a singleton group.



Lemma 1.9. A group homomorphism 6: F' — G is an isomorphism iff O —
FY% G — 0 is evact.

Proof. Since O — F is essentially an inclusion map {l1r} C F, the image is

{1r}. Hence, 0 is monic, by Lemma&“l ={lp}, it O = F Y G is exact.
Since G — O is a constant map toward the identity, its kernel is the domain G.

Hence, 6 is epic, 0F = G, iff F % G = 0 is exact. O

Theorem 1.10. For a short exact sequence O — F Yae S H 0, 0 is
monic and @ is epic.

Proof. Since O — F 9 G is exact, {1p} = 1. By Lemma 0 is monic.
Since G % H — O is exact, @G = H. Hence, ¢ is epic. O

Remark. The corestriction 6: F' — 6F is isomorphic. Thus, we may identify
FCG through FF =2 0F C G. Since ¢: G — H is epic, oG = H. With
the kernel 1 = #F, Theorem implies pG = G/ (p* 1) Hence, we obtain
F=0F <G and

G/F=2G/(0F)=G/(p"1) 2 oG = H. (37)

Hence, the given short exact sequence is equivalent to

O F—~G-—"+=G/F O (38)

2 Direct Products

2.1 Direct Products

Definition 2.1 (Direct Products and Componentwise Binary Product). Let A
be a set and suppose that for each A\ € A, there is given a group G. On their
Cartesian product

HGA::{f:Aa U Gx

AEA AEA

V/\EA:fAEG)\}, (39)

we define a binary operation componentwisely, namely for f, g € [],cx,

gf: A= | G d = gafa (40)
AEA

We call [],cp G, with the associated binary operation, the direct product of
{G,\ | AE A}.

Theorem 2.1. For a set of groups {Gx | A € A}, their direct product [[yc, G
forms a group.



Proof. The corresponding binary product is essentially that of each component,
hence it is associative. Let 1: A — UAeA Gx;1 — 1g,. Then 1 is the multi-
plicative identity. For each f € [ cx G, let

FhA— G A (41)
AEA

It follows f~'f =1 = ff~% and () ': Uxear Ga = Uyea G is the desired
inverse unary operation. O

Theorem 2.2. For the direct product [[cp G of a set of groups {Gx | A € A},
the canonical projection

me: [ Ga = Gii f = fi (42)

AEA
is an epi for each k € A.

Proof. Let f,g € [Tycp Ga. For each k € A, by Deﬁnition

me(9f) = (9)k = gufr = (mrg) (71 f).- (43)

Hence, 7y is a group homomorphism for each k € A.
Let gr € Gy for a given k € A. Define h: A — (o, G by

1 AN#£k
hy = 4160 AT (44)
gk A=k
Then h € HAeA G such that, mxh = gi. Hence, my is surjective. O

Theorem 2.3 (Universal Property of Direct Products). Let H be a group and A
be a set, and suppose that for each A € A, there is given a group homomorphism
O0x: H — Gx. Then, there exists a unique mediator homomorphism 0: H —
[1ca G such that the following diagram for each k € A is commutative:

H

O
ﬂ!ol 7Tk09:9k. (45)

H/\EAG)\ ?Gk

Proof. Define

0: H— (A—> UG,\>;h—>0h, (46)
AEA
by, for each h € H,
0.h: A= | Gask — Oih. (47)
AEA

10



For each k € A, xh € Gy holds, hence §_h € [[ .5 Gx. Therefore, 0_: H —
[1,ca G- By construction, 6_ is entirely given by {6 | A € A}, so it is unique.
For hy,he € H, 0_(hahi) = (6_hs) (0_h1) holds since 0, is a group homomor-

phism and, hence,
O (hahy) = (Okh2) (Orhy) (48)

for each k € A.
Let k € A. Then, 7, 0 0_ = 6 holds, since for each h € H,
(ﬂ'k 9] 97) h = Tk (Hih) = (Hfh)k = Hkh (49)

O

2.2 Weak Direct Products

Definition 2.2 (Weak Direct Products). Let A be a set and suppose that for
each A € A, there is a given group G. The weak direct product Hz\vgaf Gy is a
subset of [] ., G of all f such that f\ = 1¢, for all but finitely many A € A.

Remark (Direct Sums). For additive, i.e., abelian groups {A | A € A}, the cor-
responding weak direct product is called the direct sum, denoted by >, Ax.

Theorem 2.4. Let A be a set and suppose that for each A € A, there is given a
group Gx. Their weak direct product is a normal subgroup of the direct product:

weak

H Gy < H G. (50)

AeA AEA
Proof. Let f,g € HY\VZ;X( G . There are finite subsets I,.JJ C A such that 7 € J
iff f; #1, and k € K iff g # 1. Consider gf~!. Recalling (gf_l)i =g;fi ! for
each 7 € A,

{ieA|gifit#1} CJUK. (51)

Since J U K C A is finite, gf~! € H;\VS&( Gx. By Lemma H‘:\Vgx{ Gy <
HAGA Gx. .

Suppose f € [[\cx Gx and g € [] cp G, and consider gfg~
finite subset I C A such that ¢ € I iff f; # 1. For any i € A,

(gfgl)i:{l ieA—T (52)

L There is a

gifigi'  otherwise.

Therefore, (gfg_l)l. is not 1 at most finitely many ¢ € I. Hence, gfg~"' €

weak
ren G O

Theorem 2.5. For the weak direct product Hfg‘;\k G of a set of groups {Gx | A € A},
the canonical injection ti,: Gy — Hfé‘j\k Gy defined by

ANF#k
(tkak)y = {i? \ i ) (53)

11



for ai € Gy, is a mono for each k € A.

Proof. Let k € A, and ag, by, € G. For each A € A, we have

(1 (buaa)), = {;j;k - 69
and
(trbr)y, (thag), = {;f;le)\ i i Z (55)
Hence, i (brar) = (tibr) (trag).
If we suppose tibr = trag, then
VA€ A (wbr)y = (trar), (56)
In particular, when \ = k, we obtain by = ay. O

Theorem 2.6. For a set of groups {Gx | A € A} and each k € A, ;G <
H/\eA Gax.

Proof. Let k € A. By Theorem g is a group homomorphism. Hence, its
image is a subgroup, txGx < [[ycp GA by Theorem

Let h € 1xGy; there is some g € G such that h = 1g,. For each A € A,
and f S H/\eA GA,

-1
_ A=k
mx (FhS1) = fam (ge) 2~ = {f ok | (57)
1 otherwise.
Recalling frgrfr ' € Gg, we conclude fhf~' € 1,Gy. O

Theorem 2.7. Let A be a set and suppose that for each A € A, there is a given
group homomorphism 0x: Gy — Hy. Let 0 :== [],cp Ox be a map from [T, Ga
to [Tyea Hx, given by

(09) = Oxgx (58)

weak

for each A € A. Then, 0 is a group homomorphism, 0 (H/\eA GA) C Ixen Hx,
01 = [Tyen (0x71), and 0 ([Tyen Gr) = ITyen 02Gxr. Moreover, 0 is monic
iff 0x is monic for each A € A, and 0 is epic iff Oy is epic for each A € A.

Proof. Let us first show 6: [[ oo Gx — [yca Ha is a group homomorphism.
Suppose f,g € [[yca G, and k € A. Then

(009.1). = Ok (g fi) = (Orgr) Onfr) = (09) (0F); - (59)

Since k € A is arbitrary, we conclude 0(gf) = (69)(0f).
Next, 0 ([Thea Gr) C IINEE Hy. Let h € 0 ([Tyep Ga); there is a g €
[1,ca G such that h = 0g, where g satisfies

gx = 1 for all but finitely many A\ € A. (60)

12



There exists a finite subset I, C A such that i € I iff g; # 1. Then h = fg
satisfies
)\EA—I}L:>/7,/\—(91))\:1. (61)

weak

Therefore, hy is not 1 at most finitely many A € A. That is, h € [[{cx Ha.
The kernel of 6 is

9“1—{96 HGA

AEA

={g€ |JRE

AEA

= L))

A€A

V/\GAZ@)\Q)\_].HA}

VAeA:gAe@ﬂ} (62)

and the image is

0<HGA>{h€ 11 &

AEA AEA

Jg € HGA:hHg}

AEA

Z{h:/\—> UH)\ V)\GA:h)\EH)\/\ﬂg,\EG)\Zh)\ZQ,\g)\}

{h:A% U Hx VAGA:EIgAEGA:hAQ,\gA}

:{h:A—> U Ha VAeAzh,\eeAGA}

(63)

Recall that 6 is monic iff /<1 = {1} by Lemma As shown above,
01 =TTyea (027 1), 6 is monic iff

VAeA: 0,71 = {1} (64)

Thus, 6 is monic iff each 8 is monic. As shown above, (HAGA GA) = JTaen 002G,
0 is epic iff 0 ([Tcp Gr) = [Laen Ha, ie.,

VYAe A:0,G\ = H,. (65)
Therefore, 6 is epic iff each 0y is epic. O

Theorem 2.8. Let A be a set and suppose that for each A\ € A, there are a
gwen group and its subgroup Ny < Gx. Then

13



b HAeA Ny < HAeA Gy, and (HAGA G)\) / (HAGA NA) = HAGA (GA/NA).
weak weak weak weak ~ weak
o [Iher Na<Ilien Gas and ( AEA G/\) /( AEA N/\) = [1hea (GA/NK).
Proof. Let A € A, and
7T>\ZG)\—>G)\/N)\;9’—>9N)\ (66)
be the canonical epi. By Theorem [I.6] the kernel is Ny, 3“1 = N,. Hence,
P = [[xea ™ is an epi:
p: HG)\—) H(G)\/N)\) (67)
AEA AEA

with the kernel p©1 = [[ 2 (027 1) = [[,ca Na by Theorem Since the
kernel p“°1 is a normal subgroup of [[,., Gx by Lemma we conclude
[Taen Na<tITyea Ga- Since p is epic, its image is the codomain, p ([],cp GA) =
[Ica (GA/Nx). Applying Theorem [1.8] we conclude

H (GA/Nx) =p (H GA) = (H GA) /(pT1) = (H GA> / (H NA> .
AEA AEA AEA AEA AEA

68
Let p“eak be the restriction of p on H‘;\ng\k Gx <]]xea G- By Theorem
preak ig ( Yok (GA/N)\)>—valued:

weak weak
e I Ga— [] (Ga/NA). (69)
AEA AEA

Since the original p is a group homomorphism, the restriction is also a group
homomorphism, since

P (gf) =p(9f) = (pg)(pf) = (P g) (p™**f) (70)

for each f,g € H‘:\Vzi\k (GA/Ny).
Next, we will show p"®2¥ is an epi. Let [g] € HYZX‘ (Gx/N,). Since the
original p is an epi, there is g’ € [[,c, G such that pg’ = [g], that is
YA€ A: g \Nx=[g]x (71)

Since [g] € HYZX‘ (GA/Ny), [g]x = Ny for all but finitely many A € A. Hence,

we conclude ¢’ € [TSY Ga.

Finally, let us consider the kernel:

weak weak
Pl = {9 e[ Gr|p™g=1€]] (GA/NA)}
AEA AEA
weak
= {9 € H G

AEA

(72)

gxINy = N, for all but finitely many A\ € A}
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Since g\Ny = N, iff g € Ny, we obtain

weak weak
pweakel = {g € H G | g € N, for all but finitely many A € A} = H N,.
AEA AEA
(73)
Therefore, if we apply Theorem |1 . 8| for the epic p*eak: H‘;\Vg\k — f\vgx{ (GA/Ny)
with the kernel p*eak™ 1 = Yea NVa, we conclude
weak weak weak
11 (Ga/Ny) = (H G/\> / (H NA) , (74)
AEA AEA AEA

O

2.3 Direct Sums

Let us begin with the direct sum version of Theorem

Theorem 2.9. Let A be a set and suppose that for each X € A, there are a given
abelian group and its subgroup Ny < Gy. Then, (Z)\E/\ G)\) / (2/\6[\ NA) ~
Yoxen (GA/NA).

Theorem 2.10 (Universal Property of Direct Sums). Let B be an abelian group
and A\ be a set, and suppose that for each A € A, there is given an abelian group
homomorphism 1y : Ax — B. Then, there exists a unique mediator homomor-
phism 1 Y o Ax — B such that the following diagram for each k € A is

commutative:
B

Pk
3’4 Vi =P oL (75)

Z)\EA A)‘ LE Ak

Proof. Recall a € ) ., Ay iff mxa = 0 for all but finitely manly A € A. For
each a € Z)\E/x Ay, there exists a finite subset I, C A such that ma # 0 iff
i € I,. Define ¢: ), .\ Ax — B by

Y0 =0
iﬁ(l = Z ’(/JZ (7ria) . (76)
i€l,

Let a,a’ € > o) Ax. Since, if both are zero, so is their sum, namely
—Iotar D (—1) N (=14 ), we have that

It C I, U Ty, (77)

where =1 := A — I for any subset I C A. Hence,

a+a Z i 7T1,a+a)) (78)

161a+a
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is a sum over finite set I,,,. Since it is a finite sum, we can expand the
right-hand side:

blata)= > i(ma)+ Y ¢(ma) (79)

T €Ty
Let ¢ € I414, and consider the first term Ziela+a/ i (m;a).
e If m;a’ =0, m;a # 0 must be the case. So i € I,.
e Otherwise, m;a’ # 0. Therefore, either m;a = 0 or m;a # 0 is the case:

— ma’ # 0and 7;a = 0 case. The corresponding termin ), o (ma)
is zero.

— ma' # 0 and m;a # 0 case. Then i € I, is the case.
Thus, the first term is

Z Y; (ma) =0+ Z Y; (mia) = Ya. (80)

i€l g icl,

Therefore, we conclude (a + a') = va + ¥a'.
Let j € A and a; € Aj. Since tja; € Y o) Ax and 4, = {j}, see
Theorem we have

P(Lja;) Z Vi (mi(tja;)) = ¥ja,. (81)

1€L ja

Since a; € A; is arbitrary, we conclude 9 o ¢; = v;.
Finally, let us show the uniqueness. Suppose an abelian group homomor-
phism ¢: > ., Ax — B also satisfies

V)\EA:(bO[,)\:TF)\. (82)

Then, ¢ = ¢ since
da=0Y va;=Y ¢(a) = ja;=va (83)
€1, €1, i€1,

for all a € Y7 ) Ax. O

Remark. This theorem becomes false if we remove the restriction that the groups
are abelian.
Consider S3 — the symmetric group on a set of three elements:

()7

(12),(23), (31), (84)
(123), (132),
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1
where () denotes the identity, and for example (12) is 1 <> 2 swap, [ 2 a2,

3
2 ! (123) 2
1|, and (123) is a cyclic permutation [ 2] — | 3
3 3 1
S3 is generated by {(12),(123)}, since
() =(12)0(12)
23) = (12 123
(28) = (12) 0 (123) )
(31) = (123) o (12)
(132) = (123) o (123).
Moreover, S3 is not abelian:
(12) 0 (123) # (123) o (12). (86)

Consider the weak product of Zy and Z3, where Zo = Z/2Z and Zs = 7./3Z
are modular arithmetic. Since it is a finite product case, their weak product
is the ordinary product Zs X Zs. Let 12 and t3 be the corresponding canonical
injections:

Lo: Do — T X U3

(87)
13: Ly — Lo X 3.
Consider the following group homomorphisms
: 2o — S
G2 Lo 3 (88)
¢3: Zg — Sg
defined by
20 = ()7¢21 = (12)7 (89)
and
$30 = (), #31 = (123), 32 = (132). (90)

It is worth mentioning that ¢3(1+1) = (¢31) o (¢31) = (123) o (123). Suppose,
for contradiction, that there is a mediator ¢: Zy X Zs — S3. As shown above,
(12) and (123) generate Ss, and {(12),(123)} C ¢ (Z2 x Z3). Hence, ¢ is an
epi, ¢ (Z2 X Z3) = S3. Recalling the image forms a subgroup, ¢ (Z2 x Z3) < Ss,
this equality is a group isomorphism. As shown above, S3 is non-abelian but
¢ (Zs x Z3) is the image of the product of two abelian groups, so it is abelian,
which is absurd.

Theorem 2.11. Let G be an abelian group, A be a set, and suppose that for
each A € A, there is a given subgroup Ny < G. If we further assume each g € G
has a unique representation g = )\ gr, where gx € Ny is zero for all but
finitely many A € A. Then G is isomorphic to )\ Na.
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Proof. Since G is abelian, its subgroup is always normal. Let n € )7, ., Na.
Then ny = 0 for all but finitely many indices, say I,, C A:

i€, e n; #0. (91)

Then, > ;c; n; is a finite sum of elements in G, hence ) ;c; n; € G. Define
0 doaea N = Gins 30 n;.
e ¢ is a group homomorphism.

Let f,9 € 3oea Na- Then o(f +9) =3c;,, (f +9)i. If we let Iy =
{i1,...,1x}, we have

e(f+9)=U+9u+ -+ (49 = fu+ -+ fis + i+ + i (92)

since they are all members in the abelian group G. For each ¢ € Iy,
either f; =0 or f; # O:

- Iffi=0i€A—1I;.

—If f; #0,4 € Iy.

Therefore, 3Z;c;  fi =3 e, fi = ¢f. We conclude o(f +g) = of +g.
e ( is epic.

Let g € G. By hypothesis, there is a unique representation g = >, .\ g,
where g, € N, is zero for all but finitely many A € A. In other words, G is
a free abelian group with basis (J,c, Na. Let I, C A is the corresponding

subset: ¢ € I iff g; # 0. Sine Zielq gi € D sen Na satisfies “pzl‘elq gi =
g,  is surjective. : .

e (p is monic.

Consider the kernel:

00 = {ge ZN)\

AEA

g = 0} (93)

Let z € 0. By hypothesis, the corresponding unique representation of
pz =0 is given by
YAeA:z,=0. (94)

It follows z = 0, namely ¢ 0 = {0}. By Lemma ¢ is monic.

Hence, ¢: > ycp Na — G is an isomorphism. O
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