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0 Definitions and Basic Properties

This note explores basic group theory, following [1, 2].

0.1 Groups – Multiplicative Groups

Definition 0.1 (Groups). A group is given by(
G, ◦, 1, ( )−1

)
, (1)

where

• G is a set and ◦ is a binary product

◦ : G×G→ G; (g2, g1) 7→ g2 ◦ g1. (2)
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• (G, ◦, 1) forms a monoid. Namely, G is a non-empty set, ◦ is an associative
binary product, and 1 ∈ G is a multiplicative identity such that

g ◦ 1 = g = g ◦ 1, (3)

for each g ∈ G. Note that the associativity is expressed by

g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1 (4)

for any g1, g2, g3 ∈ G.

• The unary operation ( )−1 : G→ G returns the multiplicative inverse g−1

of a given g ∈ G such that

g−1 ◦ g = 1 = g ◦ g−1. (5)

Lemma 0.1. Let
(
G, ◦, 1, ( )−1

)
be a group.

• If e ∈ G satisfies
g ◦ e = g = e ◦ g (6)

for each g ∈ G, then e = 1. That is, the identity element is unique.

• For each g ∈ G, the inverse g−1 is unique.

• For each g ∈ G,
(
g−1

)−1
= g.

Proof. Since 1 ∈ G is an multiplicative identity, 1 ◦ e = e = e ◦ 1; e ∈ G satisfies
the same properties, we conclude e = 1 ◦ e = 1. Let g ∈ G. Suppose g′ ∈ G
satisfies g′ ◦ g = g = g ◦ g′. Applying g−1, we obtain g′ = g−1. We, then, have

g−1 ◦ g = 1 = g−1 ◦ g, showing
(
g−1

)−1
= g.

Definition 0.2 (Subgroups). A subset H ⊂ G of a group
(
G, ◦, 1, ( )−1

)
is

called a subgroup of G iff H forms a group and H is closed under group opera-
tions:

• For any h1, h2 ∈ H, h2 ◦ h1 ∈ H.

• The identity 1 ∈ G is in H, 1 ∈ H.

• For any h ∈ H, the inverse is in H, h−1 ∈ H.

A trivial subgroup is the singleton {1} ⊂ G; another example is G itself. We
denote a subgroup H of G by H < G.

Lemma 0.2 (Subgroup-Test). Let
(
G, ◦, 1, ( )−1

)
be a group. A non-empty

subset ∅ ̸= H ⊂ G is a subgroup iff h2 ◦ h1−1 ∈ H for any h1, h2 ∈ H.

Proof. (⇒) If H < G and h1, h2 ∈ H, then h1
−1 ∈ H and hence h2 ◦h1−1 ∈ H.

(⇐) There is at least one element inH. Select h ∈ H. Then h◦h−1 = 1 ∈ H.
For any k ∈ H, k−1 = 1 ◦ k−1 ∈ H. Suppose h1, h2 ∈ H. Then h2

−1 ∈ H, and

hence h1h2 = h1
(
h2
−1)−1 ∈ H. Since the underlying ◦ is an associative binary

product of G,
(
H, ◦, 1, ( )−1

)
forms an group.
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From this point, the group operation can be written without the symbol ◦;
namely, for g1, g2 ∈ G, we write g2g1 instead of g2 ◦ g1.

Definition 0.3 (Group Homomorphisms). Let G and H be groups. A map
θ : G→ H is called a group homomorphism iff θ (g2g1) = (θg2) (θg1).

• If a group homomorphism θ : G→ H is injective:

θg1 = θg2 ⇒ g1 = g2 (7)

for g1, g2 ∈ G, then θ is called a mono.

• If a group homomorphism θ : G→ H is subjective:

θG = H, (8)

then θ is called an epi.

A group homomorphism is called an isomorphism iff it is both monic and epic.

Lemma 0.3. Any group homomorphism preserves the identity and inverses.

Proof. Let θ : G→ H be a group homomorphism. Since 1G ◦ 1G = 1G, we have
(θ1G) ◦ (θ1G) = θ1G. Applying the inverse (θ1G)

−1
of θ1G ∈ H, we obtain

θ1G = 1H . Let g ∈ G and consider the inverse g−1 ∈ G. Since g−1 ◦ g = 1G =
g ◦ g−1, if we apply θ, we have

(
θg−1

)
◦ (θg) = 1H = (θg) ◦

(
θg−1

)
. Since the

inverse is unique by Lemma 0.1, θg−1 = (θg)
−1

.

Lemma 0.4. A group homomorphism θ : G → H is monic iff the kernel is
singleton, θ←1H = {1G}.

Proof. (⇒) Recall the very definition:

θ←1H := {g ∈ G | θg = 1H} . (9)

The kernel is non-empty, 1G ∈ θ←1H , since θ1G = 1H . Let g ∈ θ←1H . Then
θg = 1H = θ1G. Since θ is injective, g = 1G, and hence θ←1H = {1G}.

(⇐) Conversely, suppose θ←1H = {1G}. Let g1, g2 ∈ G and assume θg1 =

θg2 for g1, g2 ∈ G. Then 1H = (θg2) (θg1)
−1

= (θg2)
(
θg1
−1) = θ

(
g2g1

−1).
Hence, g2g1

−1 ∈ θ←1H = {1G}, and we have g1 = g2 since g2g1
−1 = 1G.

Theorem 0.5. Both image and kernel of a group homomorphism are subgroups.

Proof. Let θ : G → H be a group homomorphism. Let h1, h2 ∈ θG. There are
g1, g2 ∈ G such that h1 = θg1 and h2 = θg2. Since g2g1

−1 ∈ G,

h2h1
−1 = θg2 (θg1)

−1
= θ

(
g2g1

−1) ∈ θG. (10)

By Lemma 0.2, θG < H.
Let g1, g2 ∈ θ←1. Then θg1 = θg2 and, hence

θ
(
g2g1

−1) = (θg2) (θg1)
−1

= 1. (11)

By Lemma 0.2, θ←1 < G.
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0.2 Abelian Groups – Additive Groups

Definition 0.4 (Abelian Groups). Let
(
G, ◦, 1, ( )−1

)
be a group. Two elements

a, b ∈ G are commutative iff a ◦ b = b ◦ a; G is called an abelian group iff any
pair is commutative. We use + sign for the commutative binary operator, and
0 for the additive identity, and −g for the additive inverse of g ∈ G.

Definition 0.5 (Free Group). An abelian group (A,+, 0,−( )) is called free iff
there is B ⊂ A such that every element a ∈ A has a unique representation

a =
∑
b∈B

nbb, (12)

where {nb ∈ Z | b ∈ B} are all equal to zero but finitely many. In other words,
the “sequence” is eventually zero. Such a subset B ⊂ A, which generates the
given abelian group A, is called a basis for A.

Remark (Construction). Let S be a set. We will construct a free abelian group
with basis S.

Let FS be a set of functions from S to integers Z such that f ∈ FS iff

fs = 0 for all but finitely many s ∈ S. (13)

Then the zero map is in FS , 0 ∈ FS . For any f, g ∈ FS , f + g is defined
componentwisely, (f + g)s = fs + gs for each s ∈ S. The additive inverse of
f is also defined componentwisely, (−f)s = −(fs). By construction, the set of
characteristic functions forms a basis for FS :

B :=
{
χ{t} | t ∈ S

} ∼= S, (14)

where

χ{t}s :=

{
0 s ̸= t

1 s = t.
(15)

For each f ∈ FS , let If ⊂ S be a finite subset such that fs ̸= 0 iff s ∈ If . Then
any f ∈ FS is written as f =

∑
t∈If (ft)χ{t}.

We denote O for the abelian group with empty basis; since the empty sum
is the additive identity, the unique element in O is 0:

O = ({0},+, 0,−( )) . (16)

Remark (Extension “by Linearity”). If an abelian group (A,+, 0,−( )) is free
with basis B and C is an abelian group, then any map θ : B → C can be uniquely
extended to an abelian group homomorphism θ : A → C by linearity, namely
for each a ∈ A with its unique representation

∑
b∈B nbb, θa :=

∑
b∈B nb(θb).
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1 Normal Subgroups and Quotient Groups

1.1 Normal Subgroups

Definition 1.1 (Normal Subgroups). Let G be a group. A subgroup N < G is
called a normal subgroup iff gNg−1 ⊂ N for each g ∈ G, where

gNg−1 :=
{
gng−1 | n ∈ N

}
. (17)

We denote N �G for a normal subgroup H of G.

Lemma 1.1. The kernel of a group homomorphism is a normal subgroup.

Proof. Let θ : G → H be a group homomorphism. By Theorem 0.5, θ←1 < G.
Let g ∈ G and k ∈ θ←1. Then gkg−1 ∈ θ←1 since

θ
(
gkg−1

)
= (θg) 1 (θg)

−1
= 1. (18)

Therefore, g (θ←1) g−1 ⊂ θ←1.

Lemma 1.2. Let G be a group. If N�G and N < M < G,
N
� �

<
//

* 

�

''
M
� �

<
// G

,

then N �M holds.

Proof. Since N < M , it suffices to show its normality. Let m ∈ M and n ∈ N .
Since N �G and M < G, m ∈ G and hence, mnm−1 ∈ N . That is, mNm−1 ⊂
N .

Theorem 1.3. Let N �G be a normal subgroup. If we define ∼ by

g1 ∼ g2 :⇔ g2g1
−1 ∈ N (19)

then ∼ is an equivalence relation on G relative to N .

Remark. For each g ∈ G, let

[g] := {g′ ∈ G | g′ ∼ g} (20)

be the set of equivalent elements represented by g. Let G/∼ = {[g] | g ∈ G}
denote the set of equivalent classes relative to N �G.

Proof. Let g ∈ G. Since gg−1 = 1 ∈ N , g ∼ g. Hence, ∼ is reflexive.
Suppose g1 ∼ g2 for g1, g2 ∈ G. Then n := g2g1

−1 ∈ N . Since N is a
subgroup of G, n−1 ∈ N , namely n−1 = g1g2

−1 ∈ N . Hence, g2 ∼ g1, and ∼ is
symmetric.

Finally, suppose g1 ∼ g2 and g2 ∼ g3. Then g3g1
−1 ∈ K, since g2g1

−1 ∈ N ,
g3g2

−1 ∈ N and g3g1
−1 = g3g2

−1g3g2
−1. Therefore, ∼ is transitive.

Corollary 1.3.1. G/∼ with respect to G�G is a singleton.

Proof. All elements are equivalent to 1 ∈ G since g = g1−1 ∈ G for each g ∈ G.
Hence [1] = {g ∈ G | g ∼ 1} = G is the unique element.
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1.2 Quotient Groups

Lemma 1.4. Let G be a group and N �G be a normal subgroup.

• For each g ∈ G, gN = Ng = [g].

• For g1, g2 ∈ G, [g1][g2] = [g1g2].

Remark. Let G/N denote the set G/∼ = {[g] | g ∈ G} of equivalent classes with
respect to N �G with the binary product [g1][g2] = [g1g2] for [g1], [g2] ∈ G/N .

Proof. Let g ∈ G. For each n ∈ N , since N � G, k := gng−1 ∈ N . That is,
gn = kg ∈ Ng, and hence gN ⊂ Ng. Conversely, for each n ∈ N , as g−1 ∈ G,
h := g−1ng ∈ N . It follows Ng ⊂ gN . Therefore, gN = Ng holds.

Let g ∈ G and consider [g] ∈ G/∼. For each g′ ∈ [g], there exists n ∈ N with
n = g′g−1. Then, [g] ⊂ Ng since for each g′ ∈ [g], g′ = ng ∈ Ng. Conversely,
consider gk ∈ gN . As shown above, gN = Ng, there must be some h ∈ N such
that gk = hg. Therefore, h = (gk)g−1 ∈ N , showing gk ∼ g, and gk ∈ [g].
Hence, we conclude [g] = Ng

Finally, consider the binary operation. Let g1, g2 ∈ G.

[g2][g1] = {h2h1 | h2 ∈ Ng2 ∧ h1 ∈ Ng2}
= {n2g2n1g1 | n1, n2 ∈ N}
=
{
n2
(
g2n1g2

−1) g2g1 | n1, n2 ∈ N
} (21)

Since N �G,
(
g2n1g2

−1) ∈ N for each g2 ∈ G and n1 ∈ N . Hence, we obtain

[g2][g1] = {ng2g1 | n ∈ N} = N(g2g1) = [g2g1]. (22)

Theorem 1.5 (Quotient Groups). Let G be a group and N � G be a normal
subgroup. Then G/N forms a group:(

G/N, ◦, N, [( )−1]
)
, (23)

where the binary product ◦ is defined by [g1] ◦ [g2] = [g1g2] for [g1], [g2] ∈ G/N .

Proof. Since the binary product is essentially the binary product of G, it suffices
to show the identity and inverses.

• N = 1G/N

Consider [g] for g ∈ G. By Lemma 1.4, [g] = gN , and hence

[g]N = gNN = gN = [g]. (24)

Similarly, one can show that N [g] = [g].
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• [g]−1 =
[
g−1

]
Consider [g] for g ∈ G. By Lemma 1.4,

[g]
[
g−1

]
=
[
gg−1

]
= [1] = N =

[
g−1

]
[g]. (25)

Since the inverse is unique, by Theorem 0.1,
[
g−1

]
is the desired inverse

of [g].

We call the group G/N for N �G the quotient group of G modulo N .

1.3 Group Homomorphisms and Quotient Groups

Theorem 1.6. Let G and H be groups. For a group homomorphism θ : G →
H, as shown in Lemma 1.1, the kernel forms a normal subgroup, θ←1 � G.
Conversely, if N �G, then the canonical projection

π : G→ G/N ; g 7→ [g] (26)

is an epi with π←1 = N .

Proof. Suppose N�G. For any [g] ∈ G/N , if we choose g′ ∈ [g], πg′ = [g′] = [g]
since g′ ∼ g. Hence, the canonical projection π is surjective. For g1, g2 ∈ G, it
follows

π (g2g1) = [g2g1] = [g2] [g1] = (πg2) (πg1) (27)

Hence, π is a group homomorphism. Finally, we have π←1 = N since

{g ∈ G | [g] = N = N1} = {g ∈ G | g ∼ 1} =
{
g ∈ G | g = g1−1 ∈ N

}
. (28)

Theorem 1.7. Let G and H be groups, and θ : G → H be a group homomor-
phism. Suppose N � G and N ⊂ θ←1. Then, there exists a unique mediator
θ : G/N → H such that θ[g] = θg for each g ∈ G. That is, the following diagram
is commutative:

G
θ //

π

��

H

G/N
∃!θ

EE

θ ◦ π = θ. (29)

We also have θ(G/N) = θG and θ
←
1 = (θ←1) /N .

Proof. If g ∼ g′ relative to N � G, there is some n ∈ N such that n := g′g−1

and
θg′ = θ (ng) = (θn) (θg) = 1θg = θg, (30)

since n ∈ N ⊂ θ←1. Thus θ : G/N → H; [g] → θg is a well-defined map among
the corresponding sets. Since θ is fully determined in terms of the given group
homomorphism θ, it is unique.

7



The induced map θ : G/N → H is a group homomorphism, since θ is a group
homomorphism:

θ ([g2][g1]) = θ [g2g1] = θ (g2g1) = (θg2) (θg1) =
(
θ[g2]

) (
θ[g1]

)
(31)

for [g1], [g2] ∈ G/N . The images coincide:

θG =
{
h ∈ H | ∃g ∈ G : h = θg = θ[g]

}
= θ(G/N). (32)

Let K := θ←1 � G. Since N < K � G and N � G, we may apply Lemma 1.2,
N�K. Hence, K/N = (θ←1) /N is a quotient group. For any g ∈ G, [g] = gN ∈
K/N iff θ[g] = fg = 1 iff [g] ∈ θ

←
1. That is, (θ←1) /N = K/N = θ

←
1.

Corollary 1.7.1. The induced group homomorphism θ : G/N → H is an iso-
morphism iff θ is an epi and N = θ←1.

Proof. (⇒) Suppose θ is an isomorphism. Since θ is epic, so is θ since

θG = θ(G/N) = H. (33)

By hypothesis, N ⊂ θ←1; to show the other inclusion, let k ∈ θ←1:

θ[k] = θk = 1 (34)

Since θ is monic, by Lemma 0.4, θ
←
1 =

{
1G/N

}
, where 1G/N = N by Theo-

rem 1.5. Hence, [k] = N , i.e., k ∈ N .
(⇐) Suppose θ is epic and N = θ←1. Then θ is epic since θ(G/N) = θG =

H. Recalling (θ←1) /N = θ
←
1, and by hypothesis N = θ←1, the kernel is a

singleton by Corollary 1.3.1, θ
←
1 = {N} =

{
1G/N

}
.

Theorem 1.8 (First Isomorphic Theorem). A group homomorphism θ : G→ H
induces an isomorphism between G/θ←1 and θG.

Proof. The corestriction θ : G → θG is an epi. Thus, the induced group homo-
morphism via Corollary 1.7.1:

θ : G/N → θG (35)

is an isomorphism, where N := θ←1�G.

1.4 Exact Sequences

Definition 1.2 (Exact Sequences). A pair of adjacent group homomorphisms

F
θ−→ G

φ−→ H is called exact iff θF = φ←1. A sequence of group homomorphisms
is called exact iff every adjacent pair of homomorphisms is exact. An exact
sequence of the following form is called short exact:

O // F
θ // G

φ // H // O (36)

where O → F is essentially an inclusion map {1F } ⊂ F and H → O is a
constant map toward a singleton group.
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Lemma 1.9. A group homomorphism θ : F → G is an isomorphism iff O →
F

θ−→ G→ O is exact.

Proof. Since O → F is essentially an inclusion map {1F } ⊂ F , the image is

{1F }. Hence, θ is monic, by Lemma 0.4 θ←1 = {1F }, iff O → F
θ−→ G is exact.

Since G→ O is a constant map toward the identity, its kernel is the domain G.

Hence, θ is epic, θF = G, iff F
θ−→ G→ O is exact.

Theorem 1.10. For a short exact sequence O → F
θ−→ G

φ−→ H → O, θ is
monic and φ is epic.

Proof. Since O → F
θ−→ G is exact, {1F } = θ←1. By Lemma 0.4, θ is monic.

Since G
φ−→ H → O is exact, φG = H. Hence, φ is epic.

Remark. The corestriction θ : F → θF is isomorphic. Thus, we may identify

F
ι
⊂ G through F ∼= θF ⊂ G. Since φ : G → H is epic, φG = H. With

the kernel φ←1 = θF , Theorem 1.8 implies φG ∼= G/ (φ←1) Hence, we obtain
F ∼= θF �G and

G/F ∼= G/(θF ) = G/(φ←1) ∼= φG = H. (37)

Hence, the given short exact sequence is equivalent to

O // F �
� ι // G

π // G/F // O (38)

2 Direct Products

2.1 Direct Products

Definition 2.1 (Direct Products and Componentwise Binary Product). Let Λ
be a set and suppose that for each λ ∈ Λ, there is given a group Gλ. On their
Cartesian product

∏
λ∈Λ

Gλ :=

{
f : Λ →

⋃
λ∈Λ

Gλ

∣∣∣∣∣ ∀λ ∈ Λ : fλ ∈ Gλ

}
, (39)

we define a binary operation componentwisely, namely for f, g ∈
∏
λ∈Λ,

gf : Λ →
⋃
λ∈Λ

Gλ;λ 7→ gλfλ. (40)

We call
∏
λ∈ΛGλ, with the associated binary operation, the direct product of

{Gλ | λ ∈ Λ}.

Theorem 2.1. For a set of groups {Gλ | λ ∈ Λ}, their direct product
∏
λ∈ΛGλ

forms a group.

9



Proof. The corresponding binary product is essentially that of each component,
hence it is associative. Let 1: Λ →

⋃
λ∈ΛGλ; 1 7→ 1Gλ

. Then 1 is the multi-
plicative identity. For each f ∈

∏
λ∈ΛGλ, let

f−1 : Λ →
⋃
λ∈Λ

Gλ;λ 7→ fλ
−1. (41)

It follows f−1f = 1 = ff−1, and ( )−1 :
⋃
λ∈ΛGλ →

⋃
λ∈ΛGλ is the desired

inverse unary operation.

Theorem 2.2. For the direct product
∏
λ∈ΛGλ of a set of groups {Gλ | λ ∈ Λ},

the canonical projection

πk :
∏
λ∈Λ

Gλ → Gk; f 7→ fk (42)

is an epi for each k ∈ Λ.

Proof. Let f, g ∈
∏
λ∈ΛGλ. For each k ∈ Λ, by Definition 2.1,

πk(gf) = (gf)k = gkfk = (πkg) (πkf) . (43)

Hence, πk is a group homomorphism for each k ∈ Λ.
Let gk ∈ Gk for a given k ∈ Λ. Define h : Λ →

⋃
λ∈ΛGλ by

hλ :=

{
1Gλ

λ ̸= k

gk λ = k
(44)

Then h ∈
∏
λ∈ΛGλ such that, πkh = gk. Hence, πk is surjective.

Theorem 2.3 (Universal Property of Direct Products). Let H be a group and Λ
be a set, and suppose that for each λ ∈ Λ, there is given a group homomorphism
θλ : H → Gλ. Then, there exists a unique mediator homomorphism θ : H →∏
λ∈ΛGλ such that the following diagram for each k ∈ Λ is commutative:

H
θk

��
∃!θ
��∏

λ∈ΛGλ πk

// Gk

πk ◦ θ = θk. (45)

Proof. Define

θ : H →

(
Λ →

⋃
λ∈Λ

Gλ

)
;h→ θ h, (46)

by, for each h ∈ H,

θ h : Λ →
⋃
λ∈Λ

Gλ; k 7→ θkh. (47)
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For each k ∈ Λ, θkh ∈ Gk holds, hence θ h ∈
∏
λ∈ΛGλ. Therefore, θ : H →∏

λ∈ΛGλ. By construction, θ is entirely given by {θλ | λ ∈ Λ}, so it is unique.
For h1, h2 ∈ H, θ (h2h1) = (θ h2) (θ h1) holds since θk is a group homomor-

phism and, hence,
θk (h2h1) = (θkh2) (θkh1) (48)

for each k ∈ Λ.
Let k ∈ Λ. Then, πk ◦ θ = θk holds, since for each h ∈ H,

(πk ◦ θ )h = πk (θ h) = (θ h)k = θkh. (49)

2.2 Weak Direct Products

Definition 2.2 (Weak Direct Products). Let Λ be a set and suppose that for

each λ ∈ Λ, there is a given group Gλ. The weak direct product
∏weak
λ∈Λ Gλ is a

subset of
∏
λ∈ΛGλ of all f such that fλ = 1Gλ

for all but finitely many λ ∈ Λ.

Remark (Direct Sums). For additive, i.e., abelian groups {Aλ | λ ∈ Λ}, the cor-
responding weak direct product is called the direct sum, denoted by

∑
λ∈ΛAλ.

Theorem 2.4. Let Λ be a set and suppose that for each λ ∈ Λ, there is given a
group Gλ. Their weak direct product is a normal subgroup of the direct product:

weak∏
λ∈Λ

Gλ �
∏
λ∈Λ

Gλ. (50)

Proof. Let f, g ∈
∏weak
λ∈Λ Gλ. There are finite subsets I, J ⊂ Λ such that j ∈ J

iff fj ̸= 1, and k ∈ K iff gk ̸= 1. Consider gf−1. Recalling
(
gf−1

)
i
= gifi

−1 for
each i ∈ Λ, {

i ∈ Λ | gifi−1 ̸= 1
}
⊂ J ∪K. (51)

Since J ∪ K ⊂ Λ is finite, gf−1 ∈
∏weak
λ∈Λ Gλ. By Lemma 0.2,

∏weak
λ∈Λ Gλ <∏

λ∈ΛGλ.

Suppose f ∈
∏weak
λ∈Λ Gλ and g ∈

∏
λ∈ΛGλ, and consider gfg−1. There is a

finite subset I ⊂ Λ such that i ∈ I iff fi ̸= 1. For any i ∈ Λ,

(
gfg−1

)
i
=

{
1 i ∈ Λ− I

gifigi
−1 otherwise.

(52)

Therefore,
(
gfg−1

)
i
is not 1 at most finitely many i ∈ I. Hence, gfg−1 ∈∏weak

λ∈Λ Gλ.

Theorem 2.5. For the weak direct product
∏weak
λ∈Λ Gλ of a set of groups {Gλ | λ ∈ Λ},

the canonical injection ιk : Gk →
∏weak
λ∈Λ Gλ defined by

(ιkak)λ :=

{
1Gλ

λ ̸= k

ak λ = k
(53)

11



for ak ∈ Gk, is a mono for each k ∈ Λ.

Proof. Let k ∈ Λ, and ak, bk ∈ Gk. For each λ ∈ Λ, we have

(ιk(bkak))λ =

{
1Gλ

λ ̸= k

bkak λ = k
(54)

and

(ιkbk)λ (ιkak)λ =

{
1Gλ

1Gλ
λ ̸= k

bkak λ = k.
(55)

Hence, ιk(bkak) = (ιkbk) (ιkak).
If we suppose ιkbk = ιkak, then

∀λ ∈ Λ : (ιkbk)λ = (ιkak)λ (56)

In particular, when λ = k, we obtain bk = ak.

Theorem 2.6. For a set of groups {Gλ | λ ∈ Λ} and each k ∈ Λ, ιkGk �∏
λ∈ΛGλ.

Proof. Let k ∈ Λ. By Theorem 2.5, ιk is a group homomorphism. Hence, its
image is a subgroup, ιkGk <

∏
λ∈ΛGλ by Theorem 0.5.

Let h ∈ ιkGk; there is some gk ∈ Gk such that h = ιkgk. For each λ ∈ Λ,
and f ∈

∏
λ∈ΛGλ,

πλ
(
fhf−1

)
= fλπλ (ιkgk) fλ

−1 =

{
fkgkfk

−1 λ = k

1 otherwise.
(57)

Recalling fkgkfk
−1 ∈ Gk, we conclude fhf−1 ∈ ιkGk.

Theorem 2.7. Let Λ be a set and suppose that for each λ ∈ Λ, there is a given
group homomorphism θλ : Gλ → Hλ. Let θ :=

∏
λ∈Λ θλ be a map from

∏
λ∈ΛGλ

to
∏
λ∈ΛHλ, given by

(θg)λ := θλgλ (58)

for each λ ∈ Λ. Then, θ is a group homomorphism, θ
(∏

λ∈ΛGλ
)
⊂
∏weak
λ∈Λ Hλ,

θ←1 =
∏
λ∈Λ (θλ

←1), and θ
(∏

λ∈ΛGλ
)
=
∏
λ∈Λ θλGλ. Moreover, θ is monic

iff θλ is monic for each λ ∈ Λ, and θ is epic iff θλ is epic for each λ ∈ Λ.

Proof. Let us first show θ :
∏
λ∈ΛGλ →

∏
λ∈ΛHλ is a group homomorphism.

Suppose f, g ∈
∏
λ∈ΛGλ, and k ∈ Λ. Then

(θ(gf))k = θk (gkfk) = (θkgk) (θkfk) = (θg)k (θf)k . (59)

Since k ∈ Λ is arbitrary, we conclude θ(gf) = (θg)(θf).

Next, θ
(∏

λ∈ΛGλ
)
⊂
∏weak
λ∈Λ Hλ. Let h ∈ θ

(∏
λ∈ΛGλ

)
; there is a g ∈∏

λ∈ΛGλ such that h = θg, where g satisfies

gλ = 1 for all but finitely many λ ∈ Λ. (60)

12



There exists a finite subset Ih ⊂ Λ such that i ∈ Ih iff gi ̸= 1. Then h = fg
satisfies

λ ∈ Λ− Ih ⇒ hλ − (θ1)λ = 1. (61)

Therefore, hλ is not 1 at most finitely many λ ∈ Λ. That is, h ∈
∏weak
λ∈Λ Hλ.

The kernel of θ is

θ←1 =

{
g ∈

∏
λ∈Λ

Gλ

∣∣∣∣∣ ∀λ ∈ Λ : θλgλ = 1Hλ

}

=

{
g ∈

∏
λ∈Λ

Gλ

∣∣∣∣∣ ∀λ ∈ Λ : gλ ∈ θλ
←1

}
=
∏
λ∈Λ

(θλ
←1)

(62)

and the image is

θ

(∏
λ∈Λ

Gλ

)
=

{
h ∈

∏
λ∈Λ

Hλ

∣∣∣∣∣ ∃g ∈
∏
λ∈Λ

Gλ : h = θg

}

=

{
h : Λ →

⋃
λ∈Λ

Hλ

∣∣∣∣∣ ∀λ ∈ Λ : hλ ∈ Hλ ∧ ∃gλ ∈ Gλ : hλ = θλgλ

}

=

{
h : Λ →

⋃
λ∈Λ

Hλ

∣∣∣∣∣ ∀λ ∈ Λ : ∃gλ ∈ Gλ : hλ = θλgλ

}

=

{
h : Λ →

⋃
λ∈Λ

Hλ

∣∣∣∣∣ ∀λ ∈ Λ : hλ ∈ θλGλ

}
=
∏
λ∈Λ

θλGλ.

(63)

Recall that θ is monic iff θ←1 = {1} by Lemma 0.4. As shown above,
θ←1 =

∏
λ∈Λ (θλ

←1), θ is monic iff

∀λ ∈ Λ : θλ
←1 = {1}. (64)

Thus, θ is monic iff each θλ is monic. As shown above, θ
(∏

λ∈ΛGλ
)
=
∏
λ∈Λ θλGλ,

θ is epic iff θ
(∏

λ∈ΛGλ
)
=
∏
λ∈ΛHλ, i.e.,

∀λ ∈ Λ : θλGλ = Hλ. (65)

Therefore, θ is epic iff each θλ is epic.

Theorem 2.8. Let Λ be a set and suppose that for each λ ∈ Λ, there are a
given group and its subgroup Nλ �Gλ. Then

13



•
∏
λ∈ΛNλ �

∏
λ∈ΛGλ, and

(∏
λ∈ΛGλ

)
/
(∏

λ∈ΛNλ
) ∼=∏λ∈Λ (Gλ/Nλ).

•
∏weak
λ∈Λ Nλ �

∏weak
λ∈Λ Gλ, and

(∏weak
λ∈Λ Gλ

)
/
(∏weak

λ∈Λ Nλ

)
∼=
∏weak
λ∈Λ (Gλ/Nλ).

Proof. Let λ ∈ Λ, and

πλ : Gλ → Gλ/Nλ; g 7→ gNλ (66)

be the canonical epi. By Theorem 1.6, the kernel is Nλ, πλ
←1 = Nλ. Hence,

p :=
∏
λ∈Λ πλ is an epi:

p :
∏
λ∈Λ

Gλ →
∏
λ∈Λ

(Gλ/Nλ) (67)

with the kernel p←1 =
∏
λ∈Λ (θλ

←1) =
∏
λ∈ΛNλ by Theorem 2.7. Since the

kernel p←1 is a normal subgroup of
∏
λ∈ΛGλ by Lemma 1.1, we conclude∏

λ∈ΛNλ�
∏
λ∈ΛGλ. Since p is epic, its image is the codomain, p

(∏
λ∈ΛGλ

)
=∏

λ∈Λ (Gλ/Nλ). Applying Theorem 1.8, we conclude

∏
λ∈Λ

(Gλ/Nλ) = p

(∏
λ∈Λ

Gλ

)
∼=

(∏
λ∈Λ

Gλ

)
/ (p←1) =

(∏
λ∈Λ

Gλ

)
/

(∏
λ∈Λ

Nλ

)
.

(68)

Let pweak be the restriction of p on
∏weak
λ∈Λ Gλ �

∏
λ∈ΛGλ. By Theorem 2.7,

pweak is
(∏weak

λ∈Λ (Gλ/Nλ)
)
-valued:

pweak :

weak∏
λ∈Λ

Gλ →
weak∏
λ∈Λ

(Gλ/Nλ) . (69)

Since the original p is a group homomorphism, the restriction is also a group
homomorphism, since

pweak (gf) = p (gf) = (pg)(pf) =
(
pweakg

) (
pweakf

)
(70)

for each f, g ∈
∏weak
λ∈Λ (Gλ/Nλ).

Next, we will show pweak is an epi. Let [g] ∈
∏weak
λ∈Λ (Gλ/Nλ). Since the

original p is an epi, there is g′ ∈
∏
λ∈ΛGλ such that pg′ = [g], that is

∀λ ∈ Λ : g′λNλ = [g]λ. (71)

Since [g] ∈
∏weak
λ∈Λ (Gλ/Nλ), [g]λ = Nλ for all but finitely many λ ∈ Λ. Hence,

we conclude g′ ∈
∏weak
λ∈Λ Gλ.

Finally, let us consider the kernel:

pweak←1 =

{
g ∈

weak∏
λ∈Λ

Gλ

∣∣∣∣∣ pweakg = 1 ∈
weak∏
λ∈Λ

(Gλ/Nλ)

}

=

{
g ∈

weak∏
λ∈Λ

Gλ

∣∣∣∣∣ gλNλ = Nλ for all but finitely many λ ∈ Λ

} (72)
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Since gλNλ = Nλ iff gλ ∈ Nλ, we obtain

pweak←1 =

{
g ∈

weak∏
λ∈Λ

Gλ

∣∣∣∣∣ gλ ∈ Nλ for all but finitely many λ ∈ Λ

}
=

weak∏
λ∈Λ

Nλ.

(73)

Therefore, if we apply Theorem 1.8 for the epic pweak :
∏weak
λ∈Λ Gλ →

∏weak
λ∈Λ (Gλ/Nλ)

with the kernel pweak←1 =
∏weak
λ∈Λ Nλ, we conclude

weak∏
λ∈Λ

(Gλ/Nλ) ∼=

(
weak∏
λ∈Λ

Gλ

)
/

(
weak∏
λ∈Λ

Nλ

)
. (74)

2.3 Direct Sums

Let us begin with the direct sum version of Theorem 2.8:

Theorem 2.9. Let Λ be a set and suppose that for each λ ∈ Λ, there are a given
abelian group and its subgroup Nλ � Gλ. Then,

(∑
λ∈ΛGλ

)
/
(∑

λ∈ΛNλ
) ∼=∑

λ∈Λ (Gλ/Nλ).

Theorem 2.10 (Universal Property of Direct Sums). Let B be an abelian group
and Λ be a set, and suppose that for each λ ∈ Λ, there is given an abelian group
homomorphism ψλ : Aλ → B. Then, there exists a unique mediator homomor-
phism ψ :

∑
λ∈ΛAλ → B such that the following diagram for each k ∈ Λ is

commutative:
B

∑
λ∈ΛAλ

∃!ψ

OO

Ak

ψk

jj

ιk
oo

ψk = ψ ◦ ιk. (75)

Proof. Recall a ∈
∑
λ∈ΛAλ iff πλa = 0 for all but finitely manly λ ∈ Λ. For

each a ∈
∑
λ∈ΛAλ, there exists a finite subset Ia ⊂ Λ such that πia ̸= 0 iff

i ∈ Ia. Define ψ :
∑
λ∈ΛAλ → B by

ψ0 := 0

ψa :=
∑
i∈Ia

ψi (πia) .
(76)

Let a, a′ ∈
∑
λ∈ΛAλ. Since, if both are zero, so is their sum, namely

¬Ia+a′ ⊃ (¬Ia) ∩ (¬Ia′), we have that

Ia+a′ ⊂ Ia ∪ Ia′ , (77)

where ¬I := Λ− I for any subset I ⊂ Λ. Hence,

ψ(a+ a′) =
∑

i∈Ia+a′

ψi (πi(a+ a′)) (78)
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is a sum over finite set Ia+a′ . Since it is a finite sum, we can expand the
right-hand side:

ψ(a+ a′) =
∑

i∈Ia+a′

ψi (πia) +
∑

i∈Ia+a′

ψi (πia
′) (79)

Let i ∈ Ia+a′ , and consider the first term
∑
i∈Ia+a′ ψi (πia).

• If πia
′ = 0, πia ̸= 0 must be the case. So i ∈ Ia.

• Otherwise, πia
′ ̸= 0. Therefore, either πia = 0 or πia ̸= 0 is the case:

– πia
′ ̸= 0 and πia = 0 case. The corresponding term in

∑
i∈Ia+a′ ψi (πia)

is zero.

– πia
′ ̸= 0 and πia ̸= 0 case. Then i ∈ Ia is the case.

Thus, the first term is∑
i∈Ia+a′

ψi (πia) = 0 +
∑
i∈Ia

ψi (πia) = ψa. (80)

Therefore, we conclude ψ(a+ a′) = ψa+ ψa′.
Let j ∈ Λ and aj ∈ Aj . Since ιjaj ∈

∑
λ∈ΛAλ and Iιjaj = {j}, see

Theorem 2.5, we have

ψ(ιjaj) =
∑

i∈Iιjaj

ψi (πi(ιjaj)) = ψjaj . (81)

Since aj ∈ Aj is arbitrary, we conclude ψ ◦ ιj = ψj .
Finally, let us show the uniqueness. Suppose an abelian group homomor-

phism ϕ :
∑
λ∈ΛAλ → B also satisfies

∀λ ∈ Λ : ϕ ◦ ιλ = πλ. (82)

Then, ϕ = ψ since

ϕa = ϕ
∑
i∈Ia

ιjaj =
∑
i∈Ia

ϕ (ιjaj) =
∑
i∈Ia

ψjaj = ψa (83)

for all a ∈
∑
λ∈ΛAλ.

Remark. This theorem becomes false if we remove the restriction that the groups
are abelian.

Consider S3 – the symmetric group on a set of three elements:
(),

(12), (23), (31),

(123), (132),

(84)
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where () denotes the identity, and for example (12) is 1 ↔ 2 swap,

1
2
3

 (12)−−→2
1
3

, and (123) is a cyclic permutation

1
2
3

 (123)−−−→

2
3
1

.

S3 is generated by {(12), (123)}, since

() = (12) ◦ (12)
(23) = (12) ◦ (123)
(31) = (123) ◦ (12)
(132) = (123) ◦ (123).

(85)

Moreover, S3 is not abelian:

(12) ◦ (123) ̸= (123) ◦ (12). (86)

Consider the weak product of Z2 and Z3, where Z2 = Z/2Z and Z3 = Z/3Z
are modular arithmetic. Since it is a finite product case, their weak product
is the ordinary product Z2 × Z3. Let ι2 and ι3 be the corresponding canonical
injections:

ι2 : Z2 → Z2 × Z3

ι3 : Z3 → Z2 × Z3.
(87)

Consider the following group homomorphisms

ϕ2 : Z2 → S3

ϕ3 : Z3 → S3

(88)

defined by
ϕ20 = (), ϕ21 = (12), (89)

and
ϕ30 = (), ϕ31 = (123), ϕ32 = (132). (90)

It is worth mentioning that ϕ3(1 + 1) = (ϕ31) ◦ (ϕ31) = (123) ◦ (123). Suppose,
for contradiction, that there is a mediator ϕ : Z2 × Z3 → S3. As shown above,
(12) and (123) generate S3, and {(12), (123)} ⊂ ϕ (Z2 × Z3). Hence, ϕ is an
epi, ϕ (Z2 × Z3) = S3. Recalling the image forms a subgroup, ϕ (Z2 × Z3) < S3,
this equality is a group isomorphism. As shown above, S3 is non-abelian but
ϕ (Z2 × Z3) is the image of the product of two abelian groups, so it is abelian,
which is absurd.

Theorem 2.11. Let G be an abelian group, Λ be a set, and suppose that for
each λ ∈ Λ, there is a given subgroup Nλ < G. If we further assume each g ∈ G
has a unique representation g =

∑
λ∈Λ gλ, where gλ ∈ Nλ is zero for all but

finitely many λ ∈ Λ. Then G is isomorphic to
∑
λ∈ΛNλ.
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Proof. Since G is abelian, its subgroup is always normal. Let n ∈
∑
λ∈ΛNλ.

Then nλ = 0 for all but finitely many indices, say In ⊂ Λ:

i ∈ In ⇔ ni ̸= 0. (91)

Then,
∑
i∈In ni is a finite sum of elements in G, hence

∑
i∈In ni ∈ G. Define

φ :
∑
λ∈ΛNλ → G;n 7→

∑
i∈In ni.

• φ is a group homomorphism.

Let f, g ∈
∑
λ∈ΛNλ. Then φ(f + g) =

∑
i∈If+g

(f + g)i. If we let If+g =

{i1, . . . , ik}, we have

φ(f+g) = (f+g)i1 + · · ·+(f+g)ik = fi1 + · · ·+fik +gi1 + · · ·+gik , (92)

since they are all members in the abelian group G. For each i ∈ If+g,
either fi = 0 or fi ̸= 0:

– If fi = 0, i ∈ Λ− If .

– If fi ̸= 0, i ∈ If .

Therefore,
∑
i∈If+g

fi =
∑
i∈If fi = φf . We conclude φ(f+g) = φf+φg.

• φ is epic.

Let g ∈ G. By hypothesis, there is a unique representation g =
∑
λ∈Λ gλ,

where gλ ∈ Nλ is zero for all but finitely many λ ∈ Λ. In other words, G is
a free abelian group with basis

⋃
λ∈ΛNλ. Let Ig ⊂ Λ is the corresponding

subset: i ∈ Ig iff gi ̸= 0. Sine
∑
i∈Ig gi ∈

∑
λ∈ΛNλ satisfies φ

∑
i∈Ig gi =

g, φ is surjective.

• φ is monic.

Consider the kernel:

φ←0 :=

{
g ∈

∑
λ∈Λ

Nλ

∣∣∣∣∣ φg = 0

}
(93)

Let z ∈ φ←0. By hypothesis, the corresponding unique representation of
φz = 0 is given by

∀λ ∈ Λ : zλ = 0. (94)

It follows z = 0, namely φ←0 = {0}. By Lemma 0.4, φ is monic.

Hence, φ :
∑
λ∈ΛNλ → G is an isomorphism.
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