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Chapter 0

Abstract

In this note, we prove the Jordan curve theorem: a closed curve with no self-
intersection in the complex plane C divides C into exactly two connected com-
ponents — one is unbounded and the other is bounded.



Chapter 1

Preliminaries

1.1 Sets and Maps

We assume some working knowledge of informal set theory including sets and
corresponding membership relation €, subsets, supersets, the empty set §), union,
intersection, set difference, complement, and the like.

1.1.1 Sets and Maps

Definition 1.1.1 (Complement). Let X be a set and A C X be a subset. We
denote " A=X-A={zeX |z &A}

Theorem 1.1.1 (Empty Intersection and Empty Union). Let X be a set, A
be an index set, and {Ay C X | A € A} be a A-indexed set of subsets of X.
The empty intersection (e Ax is the underlying set X and the empty union
Useo Ax is the empty set (.

Proof. By definition:

(JAr={zeX|VAcA:xecA}. (1.1)
AEA

For the empty intersection, the condition is vacuously true. Hence, [,cy Ax =
X. Similarly:
UAarv={zeX|anecA:zecA,}. (1.2)
AEA

If the index set is empty, the condition is always false. Hence, [,y Ax = ¢. m

Remark 1. We also have:

S(NArv={zeX|IeA:ag A} =] A\ (1.3)
AEA AEA



and
A ={zeX|VAeA ag A} =) A (1.4)
AEA AEA

Theorem 1.1.2. Let X be a set. For{V, C X |a € A} and{Ws C X | § € B},

(UVa>ﬂ Uws|= U Vanws (1.5)

a€A peB (a,B)EAXB
Similarly,
(ﬂ va> Ul Ws]= () VaUWs (1.6)
a€cA peB (a,B)EAXB
Proof.

(U Va>m UWs| ={reX|3acA:zecV,}

a€cA pBeEB
N{zeX|3peB:xecWs} (1.7)
={reX|3a,8) e AxB:xeV,NWs}

= U Vanws
(a,8)€EAXB

Similarly,

(ﬂ Va>u (Y Ws | ={zeX|V(a,p) e AxB:zeV,UWs}
acA BseB (18)

= (] VaUWs
(e,B)EAXB

For a given map f: X — Y, there are two induced maps:
e Direct image f:2X = 2Y; U {yeY |Fue U :y= fu}
e Preimage f<:2Y = 2X: W — {2z € X | fr e W}

Theorem 1.1.3 (Properties of Preimage). Let X and Y be sets and f: X —
Y be a map. The preimage map f< preserves the following elementary set
operations:

e f© (UAEA BA) = UAEA 7B

o /T (n/\eA BA) = n/\EA [T By



o [T (B1—B2)=f"B1—f"Bs
where A is an arbitrary index set, By, By, By are all subspaces in 'Y for each

A€EA.

Proof. The first two equations are almost identical:

pef“(U BA><:>fp6 U Bx

A€A AEA
S 3INeA:pe fTB,y

epe | B
AEA

and

pef“(ﬂ B/\>®fp€ ) Bx

AEA AEA
SVAeAN:pe fTB)

= peE ﬂ feB)\
AEA

for each p € A.
Recalling By — B ={zx € A|x € By Ax € =By} = B; N =By, and
F (B ={z€ X | fre-B} =X f By=~f"By,  (L11)
we have
fT(Br—Bs) = [~ (B1N~Bs)

— [CBiN T (<By)
=[TBiN~fTBy
=f"B)— 7 Ba.

(1.12)

Thus, the preimage f< : 2¥ — 2% preserves union, intersection, and set-difference.
|
1.2 Topological Spaces

A topological space is a structured set in which the concept of convergence can
be defined.



1.2.1 Basic Definitions

Definition 1.2.1 (Topological Spaces). Let X be a set. A topology on X is a
subset of its subsets 7 C 2% that closed under:

e Arbitrary Union

Each union of members in 7T is also a member of T.

e Finite Intersection

Each finite intersection of members of T is also a member of 7.

As shown in Theorem the union of an empty family of sets in X is (), and
the intersection of an empty family of sets in X is X. Hence, we may add the
following, yet redundant, conditions:

e Both () and X are members of T.

The pair (X, 7T) is called a topological space. Any member in 7T is called an
open subset of X. In particular, both § and X are open subsets in X. A subset
C C X is called closed iff the complement =C := X —C' is open, namely =C € T .
Since ) = X — X and X = X — 0, both # and X are clopen. Dually, closed
subsets are closed under finite union and arbitrary intersections.
Let Y C X be a subset of a topological space (X, 7). The induced topology
onY is
Ty ={YnU|UeT}. (1.13)

The pair (Y, 7y ) is called a subspace of (X, T).

Lemma 1.2.1. Let (X, T) be a topological space and C; C Cy C X. If C1,Cq C
X are both closed, then C1 C Cs is closed relative to the subspace topology on
Cs.

Proof. Let =Cy = Coy — Cy:
—|201 = 02 n —'Cl. (114)

Since =C7 € T, i.e., =C7; C X is open, Co N —C7 C C5 is open relative to the
subspace topology. [ |

Definition 1.2.2 (Neighborhoods and Open Subspaces). Let (X, T) be a topo-
logical space, and p € X be a point. A subspace U’ C X is called a neighborhood
of p iff there exists some U € T such that p € U and U C U’. Let N, be the
set of all neighborhoods of p in X relative to T.

Lemma 1.2.2. Let (X,T) be a topological space. A subspace U C X is open,
U e T, iff Uis a neighborhood of every point in it.



Proof. (=) Suppose U € T. Then, for each p € U, U is an open neighborhood
of p.

(<) Conversely, suppose U is a neighborhood to its points. For p € U, let
Vp € T be an open subspace such that p € V,, and V}, C U. Then, we conclude
U =U,er Vp since:

vcl|Jvcu (1.15)

peU

Hence U is open. [ ]

Definition 1.2.3 (Limit Points and Closure). Let A C (X,7) be a subspace.
A point p € X is called a limit point of A iff each neighborhood of p contains
at least one point of A distinct from p:

VU e N, : U ' NA—{p} #0. (1.16)

Let A’ denote the set of all limit points. We call A :== A U A’ the closure of A
in X relative to 7.

Lemma 1.2.3. Let A C (X, T) be a subspace. For any pointp € X, p € A iff
VU €N, : U NA#0. (1.17)
Proof. (=) Let p € A:

e pc A case
For each neighborhood U’ € N,,, p € U' N A.

e p & A case
For each neighborhood U’ € N,,, UNA=U"NA— {p} # 0 holds.

(<) Let p € X. Suppose U’ N A # () whenever U’ is a neighborhood of p.

e pc A case
Since AC A, p€ A.

e p ¢ A case

Let U € N,. Since p ¢ Abut p e U, p ¢ U N A. Hence, U N A =
U' NA-—{p}#0, which means p is a limit point of A.

Theorem 1.2.1 (Characterization of Closed Subspaces). A subspace A C
(X,T) is closed iff A= A.

Proof. (=) Suppose A C (X, T) is closed. Then —A € T. Let p € =A. Since
—A is an open neighborhood of p such that =AN A = (), p is not a limit point
of A by Lemma Therefore p € A. Since ~A C —A is shown, we obtain
A D A; with the inclusion A C A, we conclude A = A.



(<) Suppose A = A. We will show —A is open. Let p € =A. Since p € -4,
p is not a limit point of A Thus, there is some neighborhood U’ € N, with
U'NA =0 by Lemmall.2.3] We obtain U’ C —A. That is, =4 is a neighborhood
of p. Aspe —Ais (Gtrbltrary7 by Lemma [[.2:2] we conclude —A € 7. [ |

Theorem 1.2.2 (Properties of Closures). Let A,B C (X, T) be subspaces.

e The closure A is C-smallest closed subspace of X containing A:

A=(|{FCX|F>AN-FeT} (1.18)

e ACB=ACB

o« A= A, i.e., the closure A of A is closed, and the closure-operation is

idempotent.
e AUB=AUB
e =0

Proof. Let A== {F C X | F > AA—F € T}. Since open subspaces are closed
under arbitrary union, the complements, i.e., closed subspaces are closed under
arbitrary intersection. Hence, A is closed. To show A is equal to A, let us
consider their complements:

C Letpe —|A Since =4 is an open neighborhood of p such that -ANA =0,
recalling A> A, we conclude —AN A = {:

fc-AnAc-AnA=0. (1.19)
Hence, by Lemma p is not a limit point of A4, i.e., p € ~A:
A c -A. (1.20)

O Let p € ~A. Since p is not a limit point of A, there exists an open
neighborhood U € N, N'T such that U N A — {p} = 0. As p is not in A,
UNA=0, thus A C ~U. Thus, ~U is a member of the intersection of
the right-hand side of . Hence, we obtain A C =U. Since p € U and

U C —A, we conclude p € —A:

—AD A, (1.21)
Therefore, we obtain A=N{F CX|FD>AA-FeT}

e ACB=ACB

Since any closed subspace containing B also contains A, A C B.

e A=A

Since A is given by an intersection of closed subspaces, A is closed. More-
over, A C A is the C-smallest subspace containing A.



e AUB=AUB
AU B is closed, and contains both A and B, hence AUA C AUB. As

AU B is closed, containing AU B, C-smallest property implies AU B C
AUB.

e =10
Since () is clopen and () C §), the C-smallest property ensures = 0.
|

Remark 2 (Interior and Boundary). Let A C (X, T) be a subspace. As a dual
concept of closure, the interior A* of A is the C-largest open set contained in A:

A= J{ueT|UCA}. (1.22)
By Remark 1] in Theorem [I.1.1]
A= J{-FeT|-FcA}
=J{-FCcX|-FeTAF>-4}
(1.23)
:ﬁﬂ{FCX|ﬁF€T/\FDﬁA}
:_‘q.
So, a subspace A C X is open iff A = A", since ~A" = =A. We call 94 == A— A"
the boundary of A. Moreover, 04 = —(A*) — = (A):

(A== (4) =(X-A")— (X - A)
={zeX|sgdA Nz ¢ (XA}
={zeX|zgA Nz EA}
=A- A"

(1.24)

Theorem 1.2.3 (Subspaces and Closures). Let (X,T) be a topological space
and (Y, Ty) C (X, T) be a subspace. For A CY, the closure Ay relative to Ty
18 Y N A, where A is the closure of A C X relative to T .

Proof. 1t suffices to show 4} = Y N A’ since Ay = A, UA and Y NA =
YUAUA) =Y NAUYNA)=AU(Y NA).
Let p € A} and Ny, be the set of neighborhood of p relative to Ty:

VU' € Ny,:3U e T:pe(UNY)CU. (1.25)
Note that (UNY) e Ty if U € T. Since p € A},
YU € Ny, : U NnA—{p} #0, (1.26)

ie.,

VU eN,NT:(UNY)NA-{p}#0, (1.27)



we obtain p € (Y N A)’ relative to 7. Recalling A C Y and p € Y, we obtain
peYnNnA.
Conversely, let p € Y N A’ relative to T

VU e N, : U NA—{p} #0. (1.28)
Since A C Y, it is equivalent to
VU e N, : U NANY) —{p} #0. (1.29)

Now, U'NY contains an open (UNY) € Ty withp e UNY. That is, U'NY
is a neighborhood of p relative to 7y, namely U'NY € Ny, moreover p € A}, .
Hence, we establish A}, =Y N A’, and Ay =Y N A. |

1.2.2 Separation Axioms

Definition 1.2.4. The following axioms describe how a topology can distin-
guish points in the underlying set:

T> A T, space — a Hausdorff space — is a topological space (X, 7T) in which
each of two distinct points have disjoint neighborhoods, that is, if p # ¢,
there are U" € N, and V' € N, with U' NV’ = {).

Ty, A T, space is a Hausdorff space in which each disjoint closed subspaces
have disjoint neighborhoods.

1.2.3 Basic Open Sets

... We can to an extent preassign the notion of nearness desired. [Dug66]

Definition 1.2.5 (Subbases and Generated Topology). Let X be a set and
S C 2% be a set of subsets in X. As 2% is a topology of X,

7s == {T C 2% | T is a topology on X with S C T} (1.30)

is non-empty. Their intersection:

ﬂTS = m{TETs} (1.31)

is called the topology generated by S. It is the C-smallest topology containing S.
For the generated topology, the generating set S is called the subbbasic open
set, in short, a subbase.

Remark 3 (Basis). No further conditions for being a subbase of some topology.
If S satisfies:

1. & covers X

For each z € X, there is a B € § with € B. This condition guarantees
that X is open.

10



2. Binary Intersection

Let B1,By € S. If x € By N By, there is a B3 € S with z € Bz and
Bs C B; N By. This condition guarantees that By N By is open.

Then S is called the set of basic open sets, in short, a basis for the topology
N 7s of X.

Theorem 1.2.4. Let X be a set, S C 2% be a basis — S satisfies both conditions
and[q - and Ts be the set of all unions of S. Ts is a topology on X. Moreover,
Ts =N7s-

Proof. As the condition [I] ensures S covers X, we have X € Ts. If we take the
empty union, ) € Ts. By definition, Ts is closed under arbitrary union. The
condition [2| guarantees Tgs is closed under binary, hence any finite intersection.
Therefore, Ts forms a topology on X.

Since § C Ts holds, Ts € 7g, hence (7s C Ts. To show the other inclusion,
let U € Ts. By construction, there exists By C S with

U=JBv=J{VeBu}. (1.32)

As By C S, and any member T € 75 contains S, we obtain By C T for each
T € 7s. Thus, By C T holds for each T € 75. Le., U € [\ 7s- [ ]
1.2.4 Continuous Maps

For given topological space (X, Tx) and (Y, 7y ), and a map between the under-
lying sets f: X — Y, we use f to associate the topology since f* preserves
the elementary set operations as shown in Theorem [T.1.3}

Definition 1.2.6 (Continuous Maps). Let (X, Tx) and (Y, 7y) be topological
spaces. A map f: X — Y is called continuous iff the preimage of each open
subspace in Y is open in X. That is, f< maps Ty C 2Y into Tx:

f(_: Ty — Tx- (1.33)
The set of all continuous maps from X to Y is denoted by C°(X,Y).

Theorem 1.2.5 (Characterizations of Continuity). Let (X, Tx) and (Y, Ty) be
topological spaces, and f: X =Y be a map. The following are equivalent:

1. f € CY%X,Y) by means of Definition .
2. For a subbase (or a basis) Sy C Ty, [©Sy C Tx.
3. The preimage of a closed subspace in'Y is closed in X.

4. For each x € X and for each neighborhood V' € Ny, there exists a
neighborhood U' € N, such that fU" C V.

5. fAC fA for every AC X.

11



6. f©B C f<B for every BCY.

Remark 4 (ed-Continuity). The condition [4f is the topological version of e-§
definition of continuity.

Proof. As Sy C Ty, [©ls, : Sy = Tx. Conversely, suppose [ Sy C
Tx is the case. Let W € Ty. Since Ty is generated by Sy, W is given by some,
not necessarily finite, union of finite intersections of members in Sy:

w=J (BF) m~~mB§j)), (1.34)
AEA

where By‘) e B](;\) € Sy for each A € A. Applying Theorem , we obtain

few= o (B§/\) m...mBJ(.j)) = (f(_Bw)ﬁ"'m(f‘_Bj(-f)) . (1.35)

AEA AEA

Since (f‘_B?)) n---N (f*Bj(vi‘)) € Tx and W is a union of such open subspaces
in X, we conclude f<W € Tx.

By Theorem [I.1.3]
A=Y -A)=X-fTA=-f"A (1.36)

for every A C X.

Let x € X, V' € Ngp,and V € Ty sit., fere Vand V CV'. As f
is continuous, f<V € Tx. Since x € f<V, we may set U' = f<V.

Let A C X and z € A; we will show fz is a member of fA. Consider
V' € Npy; as we assume 4 there exists U’ € N, with fU’ C V'. Since z € 4,
by Lemma, U'N A # 0 holds. Hence, fr € fA:

DCfUNACfUNFACV NfA. (1.37)
:>@ Let BCY and A= f< B. As we assume
f(feB)=fAC fA=f(f<B)CB. (1.38)

Thus, f<B C f<B. -
@ Let B C Y be a closed subspace. As we assume @ feB C fB.
Since B = B, we conclude f<B = f<B:

feBC fCBC f“BcC f<B. (1.39)
See Theorem [[.2.11 ]

Lemma 1.2.4 (Universal Property of Relative Topology). Let Y C (X, T) be
a subspace. The relative topology Ty defined in Definition [1.2.1] can be charac-
terized as the C-smallest topology on Y for which the inclusion map:

Y > X;y—y (1.40)

is continuous, namely i € C°(Y, X).

12



Proof. Let Ty be an arbitrary topology on Y. Suppose i: ¥ — X is continuous
relative to (X, 7) and (Y, Ty’). We will show that 7y’ D Ty.
Let U € T. Asi € C°((Y,T%'),(X,T)), the preimage iU is open in
(¥, 7v):
iTU=UnY eTy. (1.41)

Since U is arbitrary, it follows that any open subspace in Y relative to Ty,
UNY € Ty is a member of T3/, hence Ty C Ty'. [ |

Theorem 1.2.6 (Properties of Continuous Maps). Let (X, Tx), (Y, Ty),(Z,Tz)
be topological spaces.

o If f€C%X,Y) and g € C°(Y, Z), the composition gf € C°(X,Z).

o If f € CUX,Y) and A C X, the restriction f|,: A — Y is continuous
relative to the relative topology on A.

o If f € COX,Y), the coristriction of f on its image is continuous:

fec® (X, fX). (1.42)

Proof. Suppose f € C°((X,Y),g € C°(Y,Z), and A C X.

e Since f[: Ty — Tx and ¢~ : Tz — Ty, and (go ) = fT og*, the
continuity of the composition g o f follows:

(9o /)7 : Tz — Tx. (1.43)

o Leti: A— X. Since
fla=foi (1.44)
and as shown above i € CY(A, X) relative to T4, the composition is con-

tinuous.
e For each V € Ty, i.e., for each open subspace VN fX in fX,
VX)) =fTvnfe (fX)=fVv. (1.45)
Since f<V is open in X, the restriction f: X — fX is continuous.
|

Definition 1.2.7 (Homeomorphisms and Topological Invariance). Let (X, Tx)
and (Y, 7Ty ) be topological spaces. A map f: X — Y is called a homeomorphism
— a topological isomorphism — iff the following conditions hold:

e The underlying map f: X — Y is bijective.

e Both f and f~! are continuous.

13



If f is a homeomorphism, it is denoted by f: X =Y. Two spaces X and Y are
homeomorphic, written X = Y, iff there is a homeomorphism between them.
It is worth mentioning that a homeomorphism f: X = Y is an open map —
the image of an open subspace U € Tx along f is open fU € Ty, since f~!
is continuous. Moreover, a homeomorphism f: X = Y is a bijection for the
underlying set and the associated topologies:

fX=2Y

1.46
f_lt Ty & Tx ( )

Thus, any topological property about X is mapped to that of Y. We call any
property of spaces a topological invariant iff whenever it is true for one space,
it is also varied for every homeomorphic space.

Theorem 1.2.7. Homeomorphism is an equivalence relation in the class of all
topological spaces.

Proof. Observe:

o Reflexive

For any topological space X, 1x: X = X.

e Symmetric
Iff: X2Y,Y =X via f~L.

e Transitive

Iff: X=2Yandg: Y =227, thengo f: X = Z.
See Theorem [1.2.6 [ ]

1.2.5 Connected Spaces

Definition 1.2.8 (Connectedness). A topological space is disconnected iff it
is given by the union of two nonempty disjoint open subspaces: a topological
space is connected iff it is not disconnected. A subspace is connected iff it is
connected relative to its subspace topology. We call a connected open space a
domain.

Theorem 1.2.8 (Characteristics of Connectedness). For a topological space
(X,T), TFAE:

1. (X, T) is connected.
2. The only clopen subspaces of (X,T) are § and X.

3. Any f € C°(X,2) is constant, where 2 is the two points set {0,1} with
discrete topology {0,{0},{1},{0,1}}.

14



Proof. Suppose (X, T) is a connected space. Let A C X be a non-
empty clopen subspace of (X, 7). Then X is expressed as AU—A of the disjoint
union of open subspaces. Since X is connected and A # (), =A must be empty.

Assume (X, 7T) has only two clopen subspaces () and X. Let f €
C°(X,2). Suppose, for contradiction, that f is not constant. Then, both f< {0}
and f< {1} are non-empty. Moreover, =f< {0} = f {1} # () implies f< {0} is
clopen such that § C f<{0} C X, which is absurd.

Assume no continuous non-constant map exists from X to 2. Sup-
pose, for contradiction, that (X,7) is disconnected, i.e., there exists a clopen
non-empty subspace ) C A C X. Define f: X — 2 by f|, = 1 and other-
wise zero. By definition, f is non-constant, since =A # (). Hence f<0 = 0
and f<{0,1} = X. Moreover, both f< {0} = —A and f< {1} = A are open.
Therefore, such a non-constant f is continuous, which is absurd. |

Theorem 1.2.9. The continuous image of a connected space is connected.

Proof. Let X be a connected space, Y be a topological space, and f € C°(X,Y).
Suppose, for contradiction, that the continuous image fX is disconnected. By
Theoremm there exists a non-constant continuous g € C° (X, 2). It follows
g(fX)=1{0,1}. The go f: X — 2 is continuous by Theoremm Hence, it
follows that (go f)X = {0,1} is a non-constant continuous map on a connected
space X, which is absurd. |

Theorem 1.2.10. Let X be a topological space and A C X be a connected sub-
space. Then, any B C X satisfying A C B C A is also connected; particularly,
the closure of connected subspace is connected.

Proof. Let f € C°(B,2). Since A is connected, f|, € C°(4,2) becomes con-
stant by Theorem Let {n} == f|, C {0,1}; relative to the topology on 2,
such a singleton {n} C 2 is clopen. Since B C A, we have B = AN B. As shown
in Theorem @L ANB = Ap, we conclude B = Ag. Since f is continuous, we
may apply Theorem for the relative topology Tp:

fB=fAg C fA={n}={n}=fA (1.47)
Therefore, f|z is also constant, and hence B is connected by Theorem [ |

Theorem 1.2.11. If a set of non-empty connected spaces share at least one
common point, their union is also connected.

Proof. Let {X) | A € A} be a set of non-empty connected spaces, and x €
Naca Xx. Consider f € CO (Uycp Xa,2). Let A € A. By Theoremm

flx, €C°(Xy,2). (1.48)

Since X is connected, f|y is constant; since x € X}, f|XA x = fx. Hence, f
is constant. By Theorem |1.2.8) we conclude J,., X is connected. |

15



Definition 1.2.9 (Connected Components). Let X be a topological space and
x € X. The component C, of x in X is the union of all connected subspaces
in X containing z. In other words, C, is C-largest connected subspace in Y
containing z. By Theorem [I.2.8] C,, C X is a closed subset, because both
C, and C, are connected and its C-largest property C, C C, with the trivial
inclusion C, C C.

Theorem 1.2.12. Let X be a topological space. The union of any set of con-
nected subspaces in X having at least one point in common s connected. Hence,
the component C,, is connected for each x € X.

Proof. Let C = [Jycp Ax be the union of connected subspace in X and a €
Myca Ax is a common point. Consider an arbitrary continuous map f €
CY(C,2). Let A € A. Since A, is connected, the restriction fla, is constant
by Theorem Since a € Ay, we obtain fz = fa for each z € Ay. Thus
fl a, =1 (a) holds. Since A € A is arbitrary, we conclude that f is constant. W

Theorem 1.2.13. Let X be a topological space. The set of all distinct compo-
nents in X forms a partition of X.

Proof. Let z,y € X. If C; NCy # 0, by Theorem their union C, U C), is
connected. Since C, C C,UC, and C, is C-largest connected subset containing
x, we conclude C = C; U Cy = C,. Hence, if Cy # Cy, then they are disjoint
C,NCy=0. [ ]

1.2.6 Compact Spaces

Definition 1.2.10 (Open Covers). Let (X, 7T) be a topological space and Y C
X be a subspace. Any set of subspaces {Ax C X | A € A} is called a cover of Y
iff Y C Uyea Ax. If a cover {Ay | A € A} consists of open subspaces of X, we
call it an open cover.

For a cover {Ax | A € A} of Y, a subcover is a subset {A) | A € A’}, A C A,
that is also a cover of Y.

Definition 1.2.11 (Compact Spaces). A topological space (X,7T) is compact
iff each open cover has a finite subcover.

Theorem 1.2.14. The continuous image of a compact space is compact.

Proof. Let (X,7Tx) be a compact space, (Y, Ty) be a topological space, and
f € C°(X,Y). Consider an arbitrary open cover ¥V C Ty of fX C Y. Then
{f©V |V €V} is an open cover of X; for every € X, fr € Y is covered by
some V € V:

z e V. (1.49)
Since X is compact, there exists a finite subcover X C f<V3U---U f<V;. We
have the desired finite subcover {Vi,---,V;} C V, since for each z € X, as
x € f<V; for some s € {1,---,t}, it follows fz € V. [ ]
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Theorem 1.2.15. A closed subspace of a compact space is compact.

Proof. Let (X, Tx) be a compact space and C' C X be a closed subspace. Con-
sider an open cover U C Tx of C. Since -C' C X is open, we have an open
cover of X:

UuU{-C}. (1.50)
Since X is compact, there is a finite subcover {Uy,--- , Uy} C U U {=C?}. Since
it also covers C' C X, we have the desired finite subcover of C, namely C' is
covered by {Uy,--- , Uy} — {—C}. |

Theorem 1.2.16. A compact subspace of a Hausdorff space is closed.

Proof. Let (X, T) be a Hausdorff space and K C X be a compact subspace. If
K =X, X C X is clopen. So, suppose K C X, and let z € -K. For each
y € K, as © # y, there are disjoint open subspaces Uy, V,, € T such that

zelUyNyeV,. (1.51)
Then the open cover {V, | y € K} has a finite subcover:
KcV:=V, U UV, (1.52)

Define U := U, N---NU,, . Both U and V are open in X. Moreover, UNV = 0,
since, if z € V, there is y, with 2 € V}, but 2 ¢ U,, D U. Since K C V, U and
K are disjoint, namely

UcC-K. (1.53)

Since z € U, we conclude that =K is a neighborhood of z. By Lemma [1.2.2]
-K C X is open. |

Theorem 1.2.17. A continuous bijection from a compact space to a Hausdorff
space is homeomorphic.

Proof. Let (K, Tk) be a compact space, (X,7Tx) be a Hausdorfl space, and
f € C°%(K, X). Suppose there is a map g: X — K with gf = 1y and fg = 1x.
We will show ¢ is continuous. Let V € Tgx. Consider =V := K — V of the
corresponding closed subspace in K. By Theorem -V is a compact
subspace in K; its continuous image f—V is a compact subspace in X. By
Theorem such a compact subspace f—V is closed. Now

g V=A{zeX|gre-Vi={zeX|ax=fgre f-V}=[fV (154

implies g =V C X is closed. By the condition [3]in Theorem we conclude
g is continuous. |
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1.2.7 Product Spaces
Let A # () be an index set and {X, | A € A} be a A-indexed set of sets. The
Cartesian product of {X | A € A}:

IT xx (1.55)

AEA

is given by the set of all maps {f: A = Uyea | VA € Az fA € X3}, For instance,
HAe{l,Q} = X x X, is given by

(F:{1,2) = X, UXy | fl€ X1 A f2€ Xy} (1.56)

i.e., each member in X; x Xs is essentially a pair (21, z2), where 21 = f1 € X3
and xo = f2 € Xs.
There is a natural projection for each o € A:

Po: [] Xa = Xasf = fa (1.57)
AEA

Definition 1.2.12 (Product Topologies). Let A # @ be an index set and
{(Xx,T)) | A € A} be a A-indexed set of topological spaces. For the Carte-
sian product of the underlying sets [y, X, the topology generated by the
following subbase:

U U U €Ta} (1.58)

aEN

is called the product topology; with this product topology, we call [Jc, X the
product space.

Let us consider finite products of topological spaces and compactness.

Theorem 1.2.18. Let X XY be a product of topological spaces. If X XY is
compact relative to the product topology, then X is also compact.

Proof. Let U C Tx be an open cover of X. For each U € U, consider
pxTU=UxY. (1.59)

Since px < U is a subbasic open subspace in X xY', it is open. Then {px*U |U € U}
forms an open cover of the compact X x Y. Therefore, there is a finite subcover:

XXY:pXeU:LU-“UpXFUn. (160)
Hence, {Uy,...,U,} is the desired finite subcover. |

Theorem 1.2.19 (Finite Tychonoff Theorem). The product of finite compact
spaces is compact.
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Proof. We will show the binary case; let (X, Tx) and (Y, 7Ty ) be compact spaces.
Let O be an open cover of X x Y and x € X. Since O covers X x Y:

Vy €Y :300;,) € O: (2,y) € Oy (1.61)

Since O,y C X xY is open relative to the product topology, there are U(, ., €
Tx and V(, ,) € Ty such that

(may) € U(w,y) X ‘/(a:,'q) - O(w,y)v (162)

where Utg,y) X Viay) 1 px Uty NPy Vi) = Uiy X Y) N (X X Viay)-
Now { V(4,4 | y € Y} covers Y; there is a finite subcover:
Y =

)U~-~UV( (1.63)

(2.9502.1) Y (ama))

Define:

U, = U( )ﬂ"'ﬂU( (1.64)

T3Yj(x,1) ajvyj(:c,mm))'

Since it is a finite intersection of open subspaces in X, U, € Tx. Moreover, U,
is an open neighborhood of z.
We, then, have an open cover of X, {U, |z € X}. There exists a finite
subcover:
X=Uy U---UX,, . (1.65)

Consider a finite subset of O:

{O(m’y) | T < {1‘1, T 7xn}ay € {yj(a:,l)v e ayj(x,mz)}} . (166)

Note that the indices for y varies as « € {z1,--- ,x,}. We will show that it is
the desired finite subcover of X x Y.
Let (¢,7) € X x Y. Since holds, there is some z,, with { € U,,. For
such x,, since
Y=V

(Ilnyj(wpvl)

yU UV (1.67)

TpWi(opmay) )

there is some y;(,, ;) with € V( For the given pair (£,7), we con-

T Yi(op.))’
clude:

(5,77) € Uwp X V(mpﬂyj(wp,i)) C O(I]uyj(zp,i)). (1.68)

Hence, (|1.66)) is the desired finite subcover of X x Y. |

1.3 Metric Spaces

1.3.1 Topological Properties

Definition 1.3.1 (Metrics and Metric Spaces). Let X be a non-empty set. A
metric on X is a real-valued map d: X x X — R that satisfies the following
conditions:
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e Non-negative:
For every x,y € X, d(z,y) = 0.
e Distinguishable:
For every z,y € X, d(z,y) =0iff x = y.

e Symmetric:

For every z,y € X, d(z,y) = d(y, x).

e Triangle Inequality:

For each triple points,

d(z,z) < d(z,y) +d(y, 2). (1.69)

We call d(x,y) the distance between two points  and y in X. For a non-empty
subset A C X and z € X, define the distance between A and x by

d(A,x) =inf {d(a,z) | a € A}, (1.70)

where inf stands for the greatest lower bound. Since the possible minimum
value of the metric d is zero, d(A,z) 2 0 for each z € X.

Remark 5 (Metric Spaces). Let X be a non-empty set and d be a metric on X.
Consider the set of open balls:

Bi:={Be(z)|e>0Az € X}, (1.71)

where
Be(z) ={ye X |d(z,y) <e€}. (1.72)

Lemma 1.3.1. The set of all open balls in X forms a basis.

Proof. Let X be a set, d be a metric on X, By is the set of all open balls in
X defined above. Recalling Definition we will show that B, satisfies the
conditions in Remark [3

L. Since X C |,cx Bi(), By covers X.

2. Let €1 > 0,e9 > 0, and 1,22 € X. Consider By = B, (z1) and By =
B.,(x2). Suppose B1 N By # (). Let « € By N By. Define

e :=min{e; — d(z1,x), €3 — d(z2,2)} . (1.73)
Let y € B.(x):
d(y,z1) S d(y,x) + d(z,z1) < €1 —d(x,21) + d(z,z1) = €. (1.74)
We obtain y € By; dually y € By as well, hence:
y € By N Bo. (1.75)
We conclude B¢(x) C By N Bs.
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Hence, B, forms a basis of a topology on X. |

With this generated topology, the set X with a metric d forms a topological
space. The pair (X, d) is called a metric space with the generated topology.

Remark 6. As an important example of metric space, consider C of the complex
plane, where the metric is induced by the standard Euclid norm:

|z] = v/ (R2)? + (S2)? (1.76)

Lemma 1.3.2. For two complex numbers z and w, they are equal iff for every
€>0, |z —w| < e holds.

Proof. (=) Suppose z = w. Then |z —w| = 0. Therefore, for every e > 0,
|z —w| <e.

(<) Conversely, suppose z # w. Then, € := |z — w| > 0. Hence, |z —w| S ¢
holds. |
Lemma 1.3.3. A metric is continuous.

Proof. Let (X,d) be a metric space:
d: X x X > R. (1.77)
For the product X x X, the subbase of the product topology is given by
{UxX|UeTx}U{X xV|VeTx} (1.78)

where Ty is the topology generated by the metric d on X, see Definition [T.2:12]
and Lemma Let 0 < s < t; for further discussion, let

(s<t)y={zeR|s<z <t} (1.79)
be an open interval. We will show that the following preimage is open:
d " (s<t)={(r,y) e X x X | s <d(z,y) < t}. (1.80)

Let (x,y) € d (s < t). Select a positive € > 0 such that s < d(x,y) £ 2¢ < t.
Consider B.(z) x Bc(y). For any (2/,y’) € Bc(z) x Bc(y),

d(z',y) Sd(,z) +d(z,y) + d(y,y') < d(z,y) +2e <t (1.81)
and s < d(z,y) — 2e < d(2’,y’) since
d(z,y) S d(z,2") +d(@',y) +d(y,y) < d(@',y') + 2e. (1.82)
It follows (z',y’) € d* (s < t) and, hence,
B(z) x B(y) Ccd™ (s <t). (1.83)
By Lemma the preimage of an open interval d (s < t) is open in X x X

relative to the product topology. ]
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Remark 7 (ed0-Continuity). Intuitively speaking, the above proof can be ex-
pressed as follows.

For each z,7’,y,y’ € X, the triangle inequality d(x’,y) < d(z',y’) + d(y,y')
implies —d(z',y") < d(y,y') — d(2’,y). Hence,

d(x,y) —d(a',y') = d(z,2') + d(2',y) — d(2,y') = d(z,2") +d(y,y). (1.84)
Similarly, d(2’,y") — d(x,y) < d(2',z) + d(y’,y) holds. Thus,
ld(z,y) — d(z", )| < d(z,2) +d(y,y). (1.85)
As (2/,y") --» (z,y) ie., d(z,2’) --+ 0 and d(y,y’) --+ 0, we conclude d is
continuous d(z',y’) --+ d(z,y).

Theorem 1.3.1. Let (X,d) be a metric space and A C X be a non-empty
subspace. For each point p € X, p € A iff d(A,p) = 0, where A is the closure
of A C (X,d) relative to the topology generated by d via By.

Proof. (=) Suppose p € A. Let ¢ > 0. Since B.(z) is an open neighborhood
around p,

Be(p)nA—{p}t#0 (1.86)
by Definition We may select ¢ € Be(p)NA—{p}. Since q € A, and d(4,p)
is a lower bound of {d(a,p) | a € A}:

d(A,p) < d(q,p) < e. (1.87)

P
Recalling ¢ > 0 is arbitrary and d(A,p) = 0, by Lemma we conclude
d(A,p) =0.
(<) Consider the complement ~A = X — A. If ~A = {), nothing has to be
proven. Let p € —A. Since =A C X is open, there is € > 0 such that

B.(p) C —A. (1.88)

For each a € A, since a € B(p), d(a,p) = €. That is, € > 0 is a lower bound of
{d(a,p) |a € A}:
d(A,p) 2 €> 0. (1.89)

Hence, d(A,p) #0if p & A. [ |
Theorem 1.3.2. Metric spaces are Ty spaces.

Proof. Let (X,d) be a metric space.
First, we will show (X, d) is a Hausdorff space. Suppose x and y are distinct
points in X. Since = # vy,
e :=d(z,y) > 0. (1.90)

We will show B, /o(x) N Bejo(y) = 0. Suppose, for contradiction, that there
exists p € Beja(x) N Bej2(y). Then:

e=d(z,y) Sd(z,p) +d(p,q) <€/2+¢/2=F¢, (1.91)
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which is absurd.

Consider two non-empty disjoint closed subspaces Fy, Fy C X. Let p € Fj.
Since Fy = Fj, by Theorem d(Fz,p) > 0. Define 8, := 1d(F,p) and
U, = Bs,(p), and

Gr= | Up (1.92)

Similarly, G5 = quF2 Vg, where 4 = %d(Fl,q) > 0 and V, = B;s,(¢q). By
definition, both G; D F; and G4 D Fy, and they are open in X. We will show
G171 and G> are disjoint. Suppose, for contradiction, that there is an r € G1NGs.
Then, there are some p € Fy and ¢q € F} such that » € Bs,(p) N Bs, (). Without
loss of generality, d, < d,:

35, = d(Fi,q) < d(p,q) < d(p,7) +d(r,q) < 0, +0, £ 25,,  (1.93)
which is absurd. ||

Theorem 1.3.3. Let (X,d) be a metric space and A C X be a non-empty
subspace. The distance d(A,_) : X — R is continuous.

Proof. Let p,q € X and a € A:
d(A,p) < d(a,p) < d(a,q) + d(g, p) (1.94)

Therefore, d(A,p) — d(q,p) < d(a,q), meaning that d(A,p) — d(q,p) is a lower
bound of {d(a,q) |a € A}:

d(A,p) — d(q,p) = d(A, q). (1.95)
Swapping p > ¢, we obtain d(A, q) — d(p,q) < d(A, p):

|d(A,p) —d(A, q)| = d(p,q) (1.96)
As q--+p, ie,asd(p,q) --+ 0, |d(A,p) —d(A,q)| --+ 0.

Formally speaking, for any € > 0, there is a § > 0 for instance, J := § such
that

for any ¢ € Bs(p). By the condition [4] in Theorem d(A, ) is continuous
at p € X. ||

Remark 8 (Lipschitz Continuous). Given two metric spaces X and R, (1.96])
implies d(A, _) is Lipschitz continuous with Lipschitz constant is equal to 1.
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1.3.2 Uniform Continuity and Uniform Limit Theorem

Definition 1.3.2 (Uniformly Continuous Maps). A map f: X — Y between
metric spaces is called uniformly continuous iff for each € > 0, there exists § > 0
such that

dy (fp.faq) <e (1.98)
for each p,q € X such that dx(p,q) < 4.

Theorem 1.3.4 (Heine-Cantor Theorem). A continuous map between two met-
ric spaces is uniformly continuous if the domain space is compact.

Proof. Let (X,dx) and (Y,dy) be metric spaces, and f € C°(X,Y). Suppose
(X,dx) is compact. Let ¢ > 0. For each € X, since f is continuous, there
exists d, > 0 such that

f(Bs,(x)) C Beya(fi) (1.99)

see the condition {| in Theorem Since {Bjs,2(z) |z € X} is an open
covering of the given compact space X, there exists a finite subcover:

X:Béml/z(xl)U"'UBézk/Z(xk)~ (1.100)
Define o > 0:
do = min Oy Oy (1.101)
O -— 2 PICICIREY 2 . .

Let p € X; there is some [ € {1,...,k} such that p € B(;IZ/Q(JUZ). For each
q € Bs,(p), namely dx(p,q) < do:

5o,
dx (q,21) < dx (¢,p) +dx (p, 1) < do + < < Oy (1.102)

That is, both p and ¢ are in Bgml (z;). Then, the images fp and fq are in
Bejo(fx1), hence

dy (fp. fa) < dy (fp, fz) + dy (fo1, fq) < g + g. (1.103)

Since p is arbitrary for the preassigned € > 0, we conclude that f is uniformly
continuous. |

Definition 1.3.3 (Uniform Convergence). Let X be a set, (Y,d) be a metric
space,
{fn: X =Y |neN} (1.104)

be a N-index set of maps. As a sequence, {f, | n € N} converges uniformly to
a limit f. iff for each € > 0, there exists N € N such that for every n € N,

nZN=VreX:d(fn(z), folx)) <e (1.105)

24



Theorem 1.3.5 (Uniform Limit Theorem). Let X be a topological space, (Y, d)
be a metric space,
{fn: X =Y |neN} (1.106)

be a sequence of maps converging uniformly to foo: X =Y. If {fn: X =Y | n € N}
s a sequence of continuous maps, then the limit fo is continuous.

Proof. Let x € X. For a given sequence {fn eCY%X,Y)|ne N}7 we will show
that the limit is continuous at . Let € > 0 be arbitrary.
Since f, --+ foo uniformly as n --+ oo, for any t € X, there is some N; € N
such that .
n 2 Ny = d(fot, fool) < 3 (1.107)

For n = N,, since f, € C°(X,Y), there is some neighborhood U € N, such
that c
Yy €U |fox = fayl < 3. (1.108)

Let y € U. If n 2 max {N,, N, },
d(foox,fooy) é d(foowvfnm) + d(fnxafny) + d(fny,fooy) <e (1'109)
Hence as y --+ « relative to the topology on X, fooy --+ foo. ]

Theorem 1.3.6 (Special Case of Tietze-Urysohn Theorem). Let (X,d) be a
metric space, Fy, F} C X be non-empty closed subspaces. If Fy and Fy are
disjoint, then there exists a continuous map f € C°(S,[0,1]) such that flg, =0
and flp = 1.

Proof. Since Foy N Fy =0,

g = d(Fo,,)—Fd(Fl,,) (1110)
is continuous and positive definite. Define
d(F{ d(F;
fp — ( Oap) _ ( Ovp) (1111)

9(p)  d(Fo,p)+d(F1,p)
We will show that f is continuous. For p,q € X,

(d(Fo,p) + d(F1,p)) d(Fo,q) — d(Fo,p) (d(Fo,q) + d(F1,q))

fa—fp=
9()g(q)
_ d(Fy,p) (d(Fo, q) — d(Fo, p)) + d(Fo, p) (d(F1, p) — d(F1,q))
9(p)g(q)
(1.112)
By Theorem [I.3:3] we conclude that as ¢ --» p, fq --» fp. [ |

Corollary 1.3.6.1. With a scaling and a shift, we obtain f € C°(S, [a,b]):
fr=0b-a)fzr+a (1.113)

fora <b.
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Lemma 1.3.4 (Special Case of Tietze’s Extension Theorem). Let (X,d) be a
metric space, F C X be a closed subspace, and g € C° (F,[—1,1]). There exists
a continuous extension of g, that is, an f € C°(X,[-1,1]) exists such that
f|F =9g-

1

Proof. For closed intervals [71, 75} and [+%, 1}, their preimages:

1 1
FO, = g<_ |:—1,—3:| ,F0+ = g<_ |:3’1:| (1114)

are closed in X, see the condition |3| Theorem Moreover, they are disjoint.
Applying Theorem [T1.3.6] there exists

11
CO X, | -5 1.115
fo< ( ’ { 3’3]) (1.115)
such that folp = —3 and fo|p, = +3. By definition,
1
Vo € X« |for] = 3. (1.116)
Since | - 1
F=g"|-1,—3|Ug™ |—5,5| Vg™ |31 1117
o |-1-3| v |55 ] Ve 51 (1117
— ~——
Fo_ P
we conclude |gx — fox| < % for each x € F:
e 1 € Fy_ case
Since —1 < gz < —% and for = _%7
2
—3 S92~ for=0. (1.118)
e rcg— [—%,%] case
Since both —% < gz, for < +%’
2 2
—5 Sgr— for = 3. 1.119
=9~ for =3 (1.119)
o z € Fy, case
Since % <gxr <1and for = _|_%’
2
0= gz~ fors 3. (1.120)
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(1.122)

—
7N
wl N
~_

[\v]

Ve € F:|g1z — fiz| = gx—ijx <
§=0

We can continue this process so that for each n € N,
2\"1 /2\"1
0
n X |-(=z) = l=) = 1.12

Ve e F:|gx — ifjx < <2>" (1.124)

=0 3

such that

Since {f, | n € N} is a sequence of bounded maps such that

Sr| sy (3) < (1.125)
7=0 j=0 j=0

the limit lim,— o Z;.L:O = > nen fn exists, where ||f[| == sup,cx |fz[. More-
over, it is a uniform limit of continuous functions on X,

3 fu € CO(X,[-1,1)). (1.126)

neN

By (L124), 327, fj ——» g asn - oo on F:

Skl =9 (1.127)
neN F
Hence, }°, .. fn is the desired continuous extension of g on X. |
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Chapter 2

Complex Analysis 101

We assume some working knowledge of real numbers, particularly the existence
of lease upper bound: if a subspace A C R of real numbers is non-empty and
bounded above, then it has a least upper bound. Such an upper bound, if it
exists, is unique.

2.1 Intervals and Curves

2.1.1 Real Intervals and Heine-Borel Theorem

Definition 2.1.1 (Real Intervals). For a,b € R, let
[a,0] ={(1—t)a+tb|te€]0,1]}. (2.1)
We call [a,b] a real closed interval.

Theorem 2.1.1. A real closed interval [a,b] C R is connected.

Proof. Let F C [a,b] be a closed proper subspace:
0 CF Cla,b]. (2.2)

We will show that F' is not open.

Let x € F and y € —F. Without loss of generality, consider x < y case.
Define Fey :={t € F' |t < y}; as « € F, and F., is bounded above, we may
set:

z = sup Fy. (2.3)

Then x £ z £ y, since y is an upper bound of F., and z is the least upper
bound.

For any € > 0, B(2) N F # 0, ie., 2 € F, where B.(z) = (z — €,7 + ¢€).
Otherwise, any number in (2 — €, z) would be an upper bound of F,, which
contradicts the very definition of z.
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Recalling F' C [a, b] is closed, we conclude z € F. Therefore, z < y. Since the
open interval (z,y) does not meet F', (z,y)NF = (), for each € > 0, B.(z) ¢ F. In
other words, F' is not a neighborhood of z; hence, F' can not be an open subspace
of [a,b]. Tt follows that no clopen proper subspace in [a,b]. By Theorem
[a,b] C R is connected. |

Theorem 2.1.2. A real closed interval [a,b] C R is compact.

Proof. Let O be an open cover of [a,b]. Define
S = {x € [a,b] | [a,x] is finitely covered by O} (2.4)

e S is not empty
Since a € [a, b] is covered by at least one U € O, [a,a] = {a} C U. Hence,
acs.

e S C [a,b] is open

Let z € S and {V4,...,V,} C O be the finite subcover of [a,z]. Since
x € [a,b] is covered by some open V € O, there exists a positive € > 0
such that:

B.(x) C V. (2.5)

We will show that B.(z) C S. Let y € Be(z). Since y € V, we have a
finite subcover {V4,...,V,,V} of [a,y]. Hence, y € S. By Lemma [1.2.2]
S C [a,b] is open.

e S C Ja,b] is closed

Let z € S, where the closure S is relative to the topology of [a,b]. Since
S C [a,b], z is in some open W € O:

zeW. (2.6)

Hence, there is a positive ¢ > 0 with B.(z) € W. Since z € S:
B(z) NS # 0. (2.7)
There exists, thus, some y € B.(z) N S such that [a,y] is finitely covered:
[a,y] C WL U W. (2.8)

Then [a, x] is covered by {W7i,..., Wy, W}, since the interval between x
and y is covered by W and x € W. Therefore, we conclude z € S. With
the trivial inclusion S C S, we conclude S = S by Theorem m

As shown, S C [a,b] is non-empty and clopen. Since [a,b] C R is connected
by Theorem we conclude S = [a,b]. Hence, [a,b] is compact. |

Theorem 2.1.3 (Heine-Borel Theorem). Let n be a positive integer. A subspace
K C R"™ is compact iff it is bounded and closed.
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Proof. (=) Since R™ is furnished with the standard metric d, as shown in The-
orem [1.3:2] R™ is a Hausdorff space. Thus, if K C R" is compact, it is closed by
Theorem [1.2.16] Consider {B;(z) | z € K} of the set of unit open balls. Since
it is an open cover of the compact subspace K C R", there is a finite subcover:

K ChB (ml)U~-~UBl (J)n) (29)

Define M = max{|zi1|, -+ ,|z,|}. For each x € K, there is some z, with
T € B (.Tp):

|z] = d(0,z) £d(0,z,) +d(zp,x) < M+ 1. (2.10)

Hence, K C Bpr11(0) i.e., K is bounded.
Conversely, suppose K C R"™ is bounded and closed. Since K is bounded,
there is ;4 > 0 with
K C[—p,pl". (2.11)

As shown in Theorem [—p, ] C R is compact; by Theorem the
product [—u, u]™ is a compact subspace in R". By Lemma since K C
[—p, )™ is closed. By Theorem the closed subspace K C [—u,pu]" of a
compact subspace [—pu, u]" C R™ is a compact subspace in R™. |

Theorem 2.1.4 (Extreme Value Theorem). A real valued continuous map f on
a compact space K is bounded, and there are p,q € K such that fp = sup,cx fx
and fq=inf cx fx.

Proof. Let f € C°(K,R) be a continuous map on a compact space K. The image
fK C R is compact by Theorem by Theorem [2.1.3] fK is bounded in
R. Let M := sup,cg fr. Suppose, for contradiction, that there is no point x
on K so that fx = M, namely for each z € K, fr < M. Then z — M%fz >0
is continuous on K, hence ﬁ is bounded. Let € > 0 be arbitrary. There
must be some z, € K with M — e < fz, £ M, otherwise M — ¢ would be an
upper bound of fK. Hence, ﬁ > %, which means ﬁ is not bounded, a
contradiction. |

Corollary 2.1.4.1. For a subspace A C C, define
0A =sup{la—10||a,be A} (2.12)

If A is compact, there are x,y € A with 64 = |z — y| < oc.

Proof. Let
fiCxC—=R;(z,y) — |z —y| (2.13)

be the standard metric on C. By Lemma [ is continuous. If A C C is
compact, the product Ax A is also compact by Theorem|1.2.19, Hence, f|,, 4 is
bounded. Applying Theorem f has maximum, namely there are z,y € A
with 64 = f(z,y) = |z — y|. |
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2.1.2 Curves in C

Definition 2.1.2 (Curves and Complex Intervals). Let X be a topological
space. A curve in X is a continuous map from some closed interval, namely
v € C%([a,b], X). We call y(a) the initial point of 7, and ~(b) the final point of
7. A closed curve is a curve v € C° ([a, b], X) with y(a) = v(b). Let [y] = 7[a, b]
be the image in X of a curve v € C° ([a, b], X). In other words, a closed curve is
a curve with no endpoints. For a pair of complex numbers z,w € C, we denote
[w,z] ={(1—-t)w+tz|te€[0,1]}.

Theorem 2.1.5. The image of a curve in C is compact.

Proof. Let v € C°([a,b],C) be a curve. By Theorem [1.2.14| and Theorem
the continuous image [y] is compact.. |

Theorem 2.1.6. Let r > 0 and x € C. Both B,(xz) C C and its complement
—B,.(z) = C — B,(x) are connected.

Proof. Consider y € B,(z) and [z,y] = {(1 —t)x+ty |y €[0,1]}. Let p =
(1 —t)x +ty € [z,y]. Then p € B, (x) since

p—a|=[—te+ty| =tz —y[ = |z —y| <7 (2.14)
It follows [z,y] C B,(z). Hence,
Bi(z)= |J [z (2.15)
yEB,(z)

and each complex interval shares the center x in common. By Theorem [1.2.11]
we conclude B,.(z) is connected.
The complement —B,.(z) is given by:

{zeCl||lz—z|2r}=CU U Jo, = U C'U Jy, (2.16)
0€[0,27] 0€[0,27]

where C = 9B, (z) = {2 € C| |z —z|=r} and Jy == {z + texp/—10 [t 2 }.
Now, C is the image of a continuous map vy € C° ([0, 2], C):

Y08 = exp v/ —16. (2.17)

Hence, C' = [v] is connected since it is the continuous image of the connected
interval [0, 1] C R; see Theorem and Theorem Similarly, Jy is also
connected for each 6 € [0,1] with C' N Jy = {r expv/—10}. By Theorem
C'UJy is connected for each 6 € [0, 27]. Therefore, we conclude Uye(g 2. C'UJo
is connected.

Definition 2.1.3 (Path-Connectedness). A topological space is called path-
connected iff each pair of points can be joined by a curve.

Lemma 2.1.1. FEach path-connected space is connected.
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Proof. Let X be a path-connected non-empty space and x € X. For eachy € X,
there exists v, € C° ([0, 1], X) such that 7,0 = z and 1 = y. Since each v, is
connected by Theorem [T.2.9} sharing the initial point ~,0 = z,

X=J ] (2.18)

yeX
is connected by Theorem [T.2.11] [ |
Theorem 2.1.7. Let X be a topological space. TFAE:
1. Fach path-component is open.
2. Each point of X has a path-connected open neighborhood.

Proof. Each point belongs to some path-component. By [1} such a
path-component is open, and therefore, it is an open neighborhood of its points.

Let K be a path-component of X, and x € K. By [2| there is an
open and path-connected U C Y with x € U C Y. By the C-largest property
of K, K € KUU implies U C K. By Lemma[[.2.2] K is open. [ |

Remark 9. Let K be a path-component of X. Since K = X — K is given
by the union of other open path-components, =K C X is open. Namely, a
path-component of X is clopen.

Theorem 2.1.8. A topological space is path-connected iff it is connected and
each point has a path-connected open neighborhood.

Proof. (=) Let X be a path-connected space. As shown in Lemma X
is connected, and hence X is clopen. Then, X itself is a path-connected open
neighborhood of its points.

(<) Let X be a connected topological space in which each point has a path-
connected open neighborhood. Each path-component is open and, hence, closed
in X. Since X is connected, such a clopen subspace must be X itself. |

Corollary 2.1.8.1. An open subspace in R™, in particular in C, is connected
iff it is path-connected.

Proof. Let U C C be an open subspace. Each point x € U has ¢ > 0 with
B.(x) C U. Recall Bc(z) is path-connected, see the proof in Theorem
via Theorem the connectedness of U C C is equivalent to the path-
connectedness of U. |

2.2 Winding Numbers

The winding number of a closed curve is the number of times the curve winds
around a given point on the complex plane C.
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Definition 2.2.1 (Argument). For any z € C — R<, there are unique 0 €
(—m,m) and r > 0 such that z = rexp (v/—16). We call 6 the argument of
Z =Texp (\/—10):

arg: (C . Rgo) — (—m,m);rexp (V—16) — 6. (2.19)
Theorem 2.2.1. A curve in C is uniformly continuous.

Proof. Let v € C°([a,b],C) be a curve. As shown in Theorem the domain
[a,b] C R is compact. By Theorem it follows. |

Definition 2.2.2 (Winding Numbers of Closed Curves). Let v € C°([a, b],R)
be a closed curve and zg € —[y]. We will define the winding number n(v, z) of
the curve v at z.

Since [y] C C is closed, Theorem implies

0o =d([v],20) >0 (2.20)

Let € > 0 such that
0 < €< do. (2.21)

Since + is uniformly continuous by Theorem [T.3:4] there exists 6 > 0 such that,
for each s,t € [a, b],

[s —t| <d = |ys —~t] <e (2.22)
Consider a finite subdivision of [a, b]:
a=ay< a1 < < ap_1<a,=>o (2.23)
such that max {a1 — ao, -+ ,an — an—1} < J. Then, for each pair (a;j_1,a;),j €
{1a e 777’}:
lva; —yaj—1] <e. (2.24)
Moreover, for each j € {1,--- ,n},
Yaj; — 2o
w; = ——— 2.25
L —— (2.25)

satisfies |w; — 1] < 1, hence Rw; > 0:

va; — 20 — (yaj-1 — 20)
Yaj—-1 — 2o

lwj — 1| =

_ ‘vaj — a1

R}
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Thus, for each j € {1,--- ,n},
argw; € <7g, g) . (2.27)

Since -« is closed, yag = ya = vb = yay,:

n
H H Yaj; — 20 ’Yan — 20 _1, (2.28)
j=1

1 7745-1 = 20 Yo — 2o

we conclude Z;—;l argw; =0 mod 2r. We define:

n (7, 20) Z arg wj. (2.29)

Remark 10. As a trivial example, if a curve is a constant, its winding number
is zero.

Lemma 2.2.1. The winding number is independent of the subdivision.

Proof. We will show that the winding number based on a new subdivision:
ap <---<aj—1 <7T<a; <<y (2.30)

is equal to the original n (7, zg) via the subdivision in ([2.23]), using the same
notation in Definition [2.2.2)
Let 0; .= argw;. Since

Ya; — 20 Ya; —20 YT — 20

0; = arg ——— = arg (2.31)
Yaj—1 — 20 YT — 20 Y4j—1 — %o
if we define 0 == arg 720 and ¢ := arg M, we have
YT =20 1
0; = 9; + 0;’ mod 2. (2.32)
Since each argument is in (—g, %)
3

105 = (05 + 1) < 101 + [05] + |6 | < 5. (2.33)

we conclude 0; = 0; + 03’ . This means the winding number based on a finer
subdivision remains the same. |

Theorem 2.2.2. Let v be a closed curve in C. Then
n(y,-): "] = Z (2.34)

is constant on each connected component in —[y]. In particular, n(vy,_) is zero
on an unbounded connected component.
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Proof. Let v € C°([a,b],R) be a closed curve, t € [a,b], and zg, 2§ € =[y]. We
use the same 0 < € < 0 = d([y], 29) and subdivision a = ag < -+ < a, = b for

2p. Since
|7t — 20| = [t — 20| + |20 — 2g] -

we obtain:
vt — 25| 2 |7t — 20| — [20 — 20| = do — |20 — 2o

If zo and z{, are relatively close, namely, if |zg — 2{| < dp — €,
[yt — 25| > e.
Then, for each s € [a,b], |ys — z{| > € > 0, and
d([v],2,) Z e>0.
Hence, for n(v, z{,), we may use the same subdivision as n(v, zo):

aj —ya;j_
Ya; '7]/1 <f_1
Yaj—1 — %

jwy = 1] =
€

where ,
_ 04— %
e 25
Yaj—-1— 2y
for each j € {1,--- ,n}.
We will first show n(v,_) is continuous. Let j € {1,--- ,n}. Define:

_ 4 — %o
UJ = %.
vaj; — Zg
Since , ,
2 — 20 |26 — 20
|vj - 1‘ = 7
Yaj;—1 — 2 €

if z{) is sufficiently close to zp, namely if
|20 — 24| < min {e,dp — €}

then we obtain |v; — 1] < 1. Hence

™
argvj € (*5, 5) .

Since
/ /
9. == arg va; — % _ arg vaj; —Zy Y4 — 20 Yaj-1 — 20
— 7 ’°
! Yaj—1 — % Yaj; — Zo Yaj—1 — 20 YAj-1 — Zg
we obtain:

0 = 0; —arguv; +argv;_; mod 2m.
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Recalling each angle is in (—g, g)7 we conclude
0; = 0; —arguv; +argu; 1. (2.47)

Recalling vag = va,, we have vg = v,. Moreover:

> 0=>0; (2.48)

Thus, n(7y,-) is locally constant, and hence n(v,_) is continuous relative to the
discrete topology:

n(v,-) € C° (N1, 2). (2.49)
Let 2 C —[y] be a connected component and zy € Q. Define
Qo :={z€Q|n(y,2) =n(v,20)} = QN n(y,-) " n(y, 20). (2.50)

Since the singleton set {n(v,z9)} C Z is open, its preimage Q¢ C 2 is open.
Moreover, its complement is also open:

D ={z€Qn(v,2) £nlv.20)} =20 |J nlr,)k (2.51)
k#n(vy,20)

By definition, Q¢ U Q; = Q, and these two open subspaces are disjoint:
QN =0. (2.52)

Since € is connected and zy € 2 N g, by Theorem [1.2.8, we conclude Qg = .
Hence, n(v,-) is constant on each connected component.

Finally, we will show that n(~, _) is zero on an unbounded connected compo-
nent. Since C is Hausdorff, and as shown in Theorem [v] € C is compact,
by Theorem [v] € C is closed. There exists R > 0 with [y] C Br(0) =
{w € C||w| £ R}. The complement ~Br(0) = {w € C | |w| > R} is connected,
as shown in Theorem Let Qs be an unbounded component of —[v]:

-Br(0) C Q. (2.53)
Consider zg € Qo such that |z9| > 3R. Let s,t € [a,b]:

|yt — 20| 2 |20| — |7t > 3R — R =2R

(2.54)
[ys =t < [ys| + vt = 2R
Then, we obtain:
-t
‘78 Tl (2.55)
vt — 2o
Since s,t € [a,b] are arbitrary, we may use the trivial subdivision a < b:
h—
arg 100 — arg1 = 0. (2.56)
a — Zo
Hence, n(v,-)|q_ =0. |
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Theorem 2.2.3. Let 9,71 be closed curves in C, for simplicity, ~vo,v1 €
C°([0,1],C) with %0 = Y1 and y10 = y11. Suppose v%0 = 10, and there
exists h € C°(]0,1] x [0,1],C) such that

B0, ) = 70, h(1, ) = 31, h(0) = 700 = h(_, 1). (2.57)
Then, n(vo, 2z0) = n(y1, 20) for zo € —[h].

Proof. Note that for each s € [0, 1], h(s,0) = h(s, 1), that is h(s, ) € C°([0,1],C)
is a closed curve.

Let zp € —[h]. By Theorem since h is compact and its domain
[0,1] x [0,1] C R? is compact in C. Since the underlying C is a Hausdorff space,
by Theorem [h] C C is closed. Hence,

do == d([h], z0) > 0 (2.58)

by Theorem Let € > 0 such that 0 < € < dy. Since h is continuous on a
compact space [0, 1] x [0,1] C R?, by Theorem [1.3.4] h is uniformly continuous.
Therefore, there exists § > 0 such that, for each s,s’,¢,¢ € [0, 1]:

|s — |, |t —t'| <0 =|h(s,t) — h(s',t')] <e. (2.59)

Consider subdivisions 0 = sg < --- < s, = land 0 =1tg < --- < t, = 1 such
that

max {81 — S0, * ,Sm — Sm—1,81 — b0, ytn — tn_1} < 0. (2.60)
Let j € {0,--- ,m}. The condition (2.60) guarantees:
Si,tk) — 20
2mn (h(s;, - arg 7— 2.61
(h(s; Z h(s;te 1) — 7 (2.61)

is well-defined; see the construction in Definition Moreover, for any
te0,1]:
h(Sj, t) — 20
h(Sj_ht) — 20

‘ ‘h(Sj,t) — h(ijl,t) ‘ €
— 1| =
do

< =<1 2.62
h(Sj_l,t) — 20 ( )

h(s;,t)—zo0

holds, where we set s_1 = s,,,—1, and hence, |arg Ros =20
J )

s
<3

Since

h(Sj,tk) — 20 h(sj—latk—l) — 20 _ h(Sj,tk) — 20 h(sj—l,tk—l) — 20

h(Sj,tkfl) — 20 h(ijl,tk) — 20 h(ijl,tk) — 20 h(Sj,tkfl) — 20 ’

(2.63)
we obtain:
h(sj tk) —20 h(sj—1,tk) — 2o
h(sjatk—l) — 20 h(Sj_l,tk_l) — 20 (264)
= h(sj: tr) — 2o h(sj,tk—1) — 20
=sarg .~ —arg mod 27.
h(sj—1,tk) — 20 h(sj—1,tk—1) — 20
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Since each argument is in (—g, g), we conclude:

arg h(8j7tk) — 20 —arg h(S]‘,l,tk) — 20
h(sj, tk—1) — 20 h(sj—1,tk—1) — 20
(2.65)
o h(Sj,tk) — 20 h(Sj,tkfl) — 20
= arg — arg .
h(sj—1,tx) — 20 h(sj—1,tk—1) — 20
Hence, n (h(s;,-),20) =n(h(sj-1,-), 20):
Qﬂ—n(h(sjv s Zo)—27m(h(3j 15-)s 20)
sj,tk h(sj—1,tx) — 20
= ar arg
Z & hs;, th1) — 20 h(sj, tpe—1) — 20 Z h(sj—1,tk—1) — 20
S]7tk Syatk 1) — 20 (2 66)
= ar — .
Z ghsg 1,k) — 20 Z ghSJ 1, tk—1) — 20
— arg h(Sj,tn) — 20 —arg h(Sj,lfo) — 20
h(ijl,tn) — 20 h(ijl,to) — 20
=0.
Since j is arbitrary, we conclude n (h(sg,-), 20) = -+ = n (h(sm, -), 20)- |

Remark 11. The continuous map h is called a homotopy of 79 to ;. The
homotopy h represents, intuitively speaking, a continuous deformation of ~q
into ;. This theorem shows that the winding number is homotopy invariant.

2.3 Boundary-Preserving Maps on Unit Disc

Consider D = B;(0) = {z € C | |z| £ 1}, its boundary:

0D ={ze€C||z|=1} (2.67)
and the corresponding closed curve o € C° (I,9D):

Yot = exp (2mV/—1t) , (2.68)
where I == [0, 1].

Theorem 2.3.1. Let f € C° (D, D) such that foD C D. If n(fvo,-)|p #0,
then D C fD.

Proof. Suppose n (fvo,-)|p # 0 but, for contradiction, D ¢ fD. Then, we may
select zg in D — fD, and n (fv0, 20) # 0. If we define v; = 1 of a constant curve
and

h(s,t) = (1 — s)yot + s, (2.69)

we obtain h € C° ([0, 1] x [0,1],C) such that
h’(07 *) = 70, h(17 *) =M, h’(ﬂ 0) =1= h(*a 1) (270)
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Since fOD C D and zg € D — fD C D =D — 0D C D — foD,

20 & fOD. (2.71)
Hence, 2o € fD U fOD, i.e., o
Recalling [h] = D, we conclude zy & [f7o]. Applying Theorem n (fv0,20) =
n (fv1, 20) = 0, which is absurd. |
Theorem 2.3.2. Let R = R(a,b;e,d) = {2€C|a<S2zSbAcS 32 d}
be a closed rectangle, 1,72 € C° (I, R) be curves in R such that R (71,0) =
a,R(111) = b,3(120) = ¢, (21) = d, where I := [0,1]. Then there exist

s,t € I such that y1s = ~t. In other words, a curve connecting the left and
right edges meets another curve connecting the top and bottom edges.

Y21

70+ ;

] |
- \

- 111
720

Proof. Suppose, for contradiction, that such a pair of curves never meet, i.e.,
Y18 # ot for any s,t € [0,1]. Then, we can define

Y2t — s
§,t) = ——————. 2.73
Jesn 12t = 15| (273
Moreover, f € C° (I%,D) and, since |f(s,t)| = 1 for each (s, t) € I%
[f] CcoD. (2.74)

Since fD C [f] isin 9D = D — D, we have D ¢ fD. Consider a closed path L
in 1%
t

~

* [(0,0),(0,1)]
Relative to 10, the argument of vo_—v10: I — C moves from arg (720 — 710) €
[_gvo} to arg (21 —110) € [0, g], where

arg: ((C - Rgo) — (—m,m) (2.75)
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see Definition 22211

e [(0,1),(1,1)]
The argument of 721 —v;-: I — C moves from arg (121 —710) € [0, Z] to
arg (v21 —m1) € [%,W], where
T 3
arg: (C——»ﬂfﬁRgo)-+ (—-2,2w> (2.76)
with v/ —1R<q = {V—lt |t < 0} so that the argument single-valued and

continuous in the corresponding domain.

e [(1,1),(1,0)]
The argument of yo- — y11: I — C moves from arg (121 —111) € [5,7]
to arg (121 — 110) € [m, 37, where

arg: ((C — Rgo) — (0, 2m). (2.77)

e [(1,0),(0,0)]
3

The argument of 450 — v;-: I — C moves from arg (721 — 710) € [w, 7]

to arg (120 — 110) € [37”,27'('], where, with v/—1R> = {v—lt |t = 0},

5
arg: ((C — V_leO) — (g, 27r) . (2.78)
Let v1: [0,4] — L be a curve along with L C I*:
(0,u) u € [0,1]
(u—1,1) well,2]
Lt (1,3—u) we][2,3] (2.79)
(4—u,0) wel3,4]
R
f(0,1)
f(1,1
> R
f(0,0)
f(1,0)
Then f circles around the origin once, namely n (fvz,0) = 1; by Theorem
it follows D C fD, which is absurd. ]
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2.4 Jordan Curve Theorem

We will closely follow [Yan] to show Jordan curve theorem.

Lemma 2.4.1. Let F C C be a closed subspace and V C C — F be a connected
component. Then OV C F.

Proof. We will first show that a connected component V' C C — F' is open in C.
Let x € V; since x € C — F and C — F' C C is open, there exists ¢ > 0 with
B.(z) C C— F. As shown in Theorem the open ball B.(z) is connected,
and V is a connected component with V N Be(z) # (. Since V C VU B.(x), the
C-largest property, see Definition implies B.(z) C V. By Lemma m
V c C is open.

Let W C C — F be another connected component; as shown above, W C C
is open. By Theorem[[.2.13] WNV = (. We will show OVNW = . Let z € W;
since W C C is open, there is € > 0 with B.(x) C W. If = were also in 9V, by
Lemma [1.2.3] Be(z) NV # 0 but B.(z) NV C WNV =0, which is absurd.

Since V' C C is open, we obtain:

oV =vV-V. (2.80)

Hence, OV NV = @. Moreover, for each connected component W of C — F,
oVNW =0

h=0vn U{W | W C C— Fis a connected component} = 9V N (C — F)

(2.81)

Therefore, OV C F holds. [ |
Theorem 2.4.1. Let v € C°([0,1],C) be a simple curve:

ys=~t=s=1t (2.82)

i.e., a curve with no self-intersection. Then, the complement —[y] = C — [v] is
a domain.

Proof. The continuous image [y] = [0, 1] of a compact interval [0, 1] is compact
by Theorem by Theorem [v] € C is closed. Hence, —[] is open.

Suppose, for contradiction, that —[y] is not connected. Then —[v] has at
least two connected components. Since [y] is bounded, at least one connected
component V, is unbounded; let V' be another connected component of —[7].
Recalling [y] C C is bounded, let R > 0 such that [y] C Br(0); let yrf =
Rexp+/—10 be the corresponding closed curve on Br(0) = {z € C | |z| = R}.
As shown in Theorem [2.1.6] C — Bg(0) is connected but [y] N (C — Bg(0)) = 0.
Hence C — Br(0) C Vi, since C — Bg(0) is unbounded. It follows:

Br(0) D -V D V. (2.83)
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Since « is injective, the corestriction v : [0,1] — [7] is bijective; by Theo-
rem- v € C°([0,1],[7]) is a continuous bijection. Applying Theorem|1.2.17]

the inverse is also contlnuous:

e (I [0,1]). (2.84)

By Lemma 1.2.1L [v] € Bgr(0) is a closed subspace. Hence, y~! has a continuous
extension ¢ on Br(0) D [y] by Lemma

o€ ¢ (Br(0), 0, 1)) (2.85)

such that [, = y~1. Consider the composition y¢: Br(0) — [v]. Since both

are continuous, yp € C° (BR(O), [’y]) Moreover, the restriction o (pl[vl is an
identity on [y]. Define f: Br(0) — Br(0):

e {z 2 € Br(0)—V (2.56)

yoz z€V

By definition, both f|m_v and f|,, are both continuous; recalling V' is open,

flov_v_y is identity, so is continuous. Therefore, f € C° (BR(O),BR(O)).
Since f|8BR(0) is identity, we obtain:

Then, for the curve on dBg(0) yrfl = Rexp+/—16,0 € [0,27] and z € Bg(0),
we obtain n (fyr, z) = 1 since fvg circles around z once:

fyrRO0=7f (Rexp \/—719) = Rexpv/—16. (2.88)

By Theorem we obtain Br(0) C fBr(0). Consider the image of Br(0)
over f:

7Br(0) < (Br(®) - V) ungV < (BrO) - V)Uh].  (289)

Recalling V' C Bpg(0), any point in V' is not in the image of f, namely V ¢
fBr(0). Therefore, we have

Bgr(0) ¢ fBr(0), (2.90)
which is absurd. | |

Definition 2.4.1 (Jordan Curves). A curve v € C9 ([0,1],C) is called a Jordan
curve iff it is closed, 70 = 1, and the restriction ’y|[0 1) is a simple curve:

Vs, t €10,1):ys =7t =s=t. (2.91)
Lemma 2.4.2. Let v € CY([0,1],C) be a Jordan curve. If =[y] = C — [v] is

not connected, the boundary of each connected component of =[] is [7].
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Proof. Since [y] C C is compact — bounded and closed — at least one connected
component of =[] is unbounded. Let V, be an unbounded connected compo-
nent of =[y]. If R > 0 is sufficiently large such that [y] C Br(0), since C— Bg(0)
is unbounded:

C — Bgr(0) C V. (2.92)

The C-largest property implies such an unbounded component is unique.

Since —[y] is disconnected, there is at least one bounded connected com-
ponent, say V. By Lemma OVa C [y] and OV C [y]. To show these
inclusions are equalities, suppose for contradiction that 9V C [y]. Shifting the
parameter, we may set

70 =71 € [y] — OV. (2.93)
Then, there are 0 < a < b < 1 such that:
vla,b] D IV. (2.94)

Since 7|[a,b is a simple curve, C — 7[a,b] is connected by Theorem By
Corollary in Theorem C — v[a, b] is path-connected. Hence, for
z € V and zo € Vi, there is a curve in C — ~[a,b] C C— 9V. Since 0V NV =
0 =0VNVy:

VUV, CcC—-0V (2.95)

It follows V UV, is path-connected, and hence connected, which is absurd. W

Theorem 2.4.2 (Jordan Curve Theorem). Let v be a Jordan curve in C. The
open subspace —[y] = C — [y] has ezxactly two connected components, one is
unbounded and the other is bounded. If we let V be the bounded connected
component and Vs, be the unbounded connected component of =[], OV = [y] =
0V is the case.

Proof. Since [v] is a compact subspace in C, by Corollary [2.1.4.1] there are
21, %2 € [y] such that

o] = sup |G — Gl =]a1 — 20| (2.96)
¢1,62€[7]
Shifting and rotating the curve, we may set z; = —1 and 2z, = +1:
A
R
>
-1 +1
(2.97)
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Since the diameter of [y] is now 2, from —1 to +1,
[CcE={€C||32] £2A|Rz| =1} (2.98)
with
W] NOE = {~1,+1}, (2.99)
otherwise, the diameter would be greater than 2. By Theorem ~ and
[—2v/—1, 2¢/—1] meet:
V] N [~2v/—T, 2v/—1] # 0. (2.100)

Since [] is compact and [-2v/—1,2+/—1] C C s closed, by Theorem|1.2.15} [y]N
[-2v/—1,2+/—1] is compact. Since §: C — R is a projection, by Theorem|1.2.18}
$ is continuous; applying Theorem , Q3 ([’y] N[-2v—-1, 2\/—1]) has extreme
values:

:=maxS ([y] N [-2v-1,2v-1]). (2.101)

Then [2v/—1,1//—1) N [y] = 0. Since £1 subdivide v into two simple curves
between +1, we let 74 be the one that [\/—1 belongs to:

V-1 € [y4]. (2.102)
Define
m =minS ([v4] N [-2v—1,2V~1]). (2.103)
It is worth mentioning [ = m. Then (m+y/—1,—2v/=1] N [y4] = 0. Let
[1V/-1, mxﬂ]7+ C [v4] (2.104)

denote the curve segment in v from [v/—1 to mv/—1.
We will show [y_]N(m+/—1, —24/—1] # 0. Consider a curve between +2+/—1:

2v-1,1vV~-1] o [IV—1, m\/—T]7+ o [myV/—1, —2v/—1], (2.105)

where o stands for the concatenation of two curves. By Theorem [2.3.2] such a
curve between +2v/—1 and y_ between +1 must meet. Since [y_] C [v] does

not meet [24/—1,1v/—1), and I/—1 € [y4], we conclude:
-] N [2v=1,1v=1] = 0. (2.106)
Moreover, [Iv/=1,my/—1 .. C [v+], and mv/—1 € [y4]. Hence, (my/—1, —2v/—1]

must meet [y_]:

-] N (mv/—1, —2v/—1] # 0. (2.107)
Since the intersection [y_] N [m+/—1, —24/—1] is non-empty and compact:

p:=maxS ([y-] N [mv—1,-2v~1])

¢ = min<J¥ ([’y_] N [mv-1, —2\/j1]) (2.108)
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By definition, m = p but [y4] N [y-] = {£1} but the intersection is on the
imaginary axis, we have m # p:

m > p. (2.109)
Hence (m+/—1,pv/—1) N [7] = 0. In particular,

_m\/filep\/fil§g

20 = 5 [~]. (2.110)
Recalling [v] is compact, its complement —[y] should have an unbounded con-
nected component; let V,, be such an unbounded component of =[y]. Let R > 0
be sufficiently large [y] € Bgr(0). Since C — Bgr(0) C —[y] is connected, see
Theorem [2.1.6] and unbounded, we obtain:

C — Br(0) C Va. (2.111)

The C-largest property of V., implies such an unbounded component of —[v] is
unique. Then 2z € E*, since zp = 0 and

m-+p
2

20 = <me[-2,2]. (2.112)

We will show that the connected component of —[y] around zq is not V.
Suppose, for contradiction, that zg is in V. Since V.. is connected, there is a
curve in Vg from 2y to some point in —F, since =E C =[] is unbounded:

a€ C'(1,Vy), (2.113)
where a0 = zy € E* and al € —~E. Define
to=inf{t el |at ¢ E'} (2.114)
and wy = atg. We will show wy € F — E* = 0F:

e wygeEFE

Let ¢ > 0 and consider B.(wp). Since « is continuous, its preimage
o Be(wg) C I is open. Hence, there is > 0 with (tg — 0,t0 + J) C
a* Be(wp):

aty — 6,0+ 0) C Be(wo). (2.115)

In particular tg — § <to =inf{t € I | at & E*}:

o (t() — g) 7’5 Ozto = Wo (2116)

and o (to — &) € B* C E. Hence, it follows wy € E = E:

Be(wo) NE — {’wo} 75 0. (2117)
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o wy & E*

Suppose, for contradiction, that wy is an interior point of E. Then there is
€ > 0 with B.(wg) C E*. Then, around ¢y, there is some § > 0 with «(to —
d,to+0) C Be(wp) since « is continuous. Then « (to + g) € B.(wg) C E*
implies to + 3 > to would be a lower bound of {t € I | at ¢ E'}, which is
absurd.

Let o = a|[0$t0] be the curve from zy to wg € OFE. Recalling wg € Vo, C
=[], wo # £1, hence Swy # 0:

e QSwy < 0 case

We have [wg, —2v/—1]gr C OF, connecting wy and —2+/—1 along with the
edge of the rectangle E, without traversing +1. Then, since g is a curve
in Vo from 2z € E* to wg € OF:

[2\/ —1, IV —1] < [l\/ —1,mv —1]7+ <& [m -1, Zo] <& [Oéo] < [U}O7 —2v _1]8E
(2.118)
does not meet v_, which is absurd.

o Swy >0

We have [wo,2v/—1]og C OF, connecting wy and 24/—1 along with the
edge of the rectangle E, without traversing +1. Then,

[—2v/—1, 2] © [a] © [wo, 2/ —1]aE (2.119)
does not meet 4, which is absurd.
Hence, zg ¢ V. Let V be a connected component of —[y] with zy € V:
VN Ve (2.120)

Finally, we will show the unbounded connected component is unique. Suppose
W C =[] is another unbounded component. Since =[] D —F, we obtain

Voo D —E. (2.121)
That is, the exterior of E is in V.. Hence, unbounded components are all in E:
VCEANW CE. (2.122)

Define a curve [3] between 42/—1:

2V T, IV TJo[lv =T, mv/—1},., ofmv/ =T, pv/~TJo[pv/ T, qx/—il]vo[q\/f, _23&].
2.123

o 2v—1,1v=1),[qv—T, —2v/~1] C Vi
Since [24/—1,1v/—1] can be connected with 3v/—1 € =F C V., [2v—1,1y/—1] C
Voo
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L4 [ZV _17m\/ _1]7+7 [p\/ _17q\/ _1]’\/— C [’7]

By the very definition, they are segments of the original curve .
o [my/—1,pv/—-1]CV

Since [m+/—1,pv/—1] contains zg € V, [mv/—1,pv/—1] C V.

Then [f]NW = 0, since [3] C Voo U[y]UV. Since £1 & [0], there are open balls
Dy € N1 with Dy N [B] = 0, choosing their diameters smaller than d([3], +1).
Since OW = [y] by Lemma [2.4.1] and +1 € [y], +1 are limit points of W'

W NDy #0. (2.124)
Let ax € WN D4, ¢ be a curve from a_ to a4, and
[-1,a_] ¢ [c] ¢ [ay,1] (2.125)

be a curve between +1. This curve in E, connecting +1, does not meet 3, which
is absurd. Hence, the bounded component of —[y] must be unique. |

Definition 2.4.2 (Interior and Exterior of Jordan Curves). For a Jordan curve
~ in C, we call the unbounded connected component V, of =[] the exterior of 7,
and the bounded component V' the interior of 7. As examined in Theorem [2.2.2]
the winding number on V, is zero.

Theorem 2.4.3. Let v be a Jordan curve in C. The winding number of ~
satisfies |n (v, 2)| = 1 for any point z in the interior of .

Proof. We will use the same notation in the proof of Theorem Assume 7y
is a curve from +1 to —1; we will show n(v,_)|,, = +1, where V is the interior
of 7. Let 64 be the line segments from —1 to +1 along JE:

[64] = [-1, =142V —=1] o [-1+2V—1,+1 + 2/—1] o [+1 4+ 2/ =1, +1] (2.126)

Let v4 + 04 be the composite curve from +1 to —1 along 74, and from —1 to
+1 along .. It follows that v, + &4 is a Jordan curve. Since —3/—1 € -F
and ~E C Vi (74 + 64+ ), the presence of a line segment [zg, —31/—1] implies zg
is in the exterior of 4 + 01, namely 2z € Voo (74 + 04):

n(y+ + 04,20) =0. (2.127)
Similarly, for
[0_] =[+1,41 -2V -1]o[+1 —2vV—-1,-1 =2V —1]o[-1 —2v/—1,—1] (2.128)

we obtain

n(y-+d_,20) =0 (2.129)
since zg € Voo (7— + d_). Recalling Definition [2.2.2] we can write:

0=n(v4+04,20) +n(y-+6-,20) =n(y,20) +n (64 +0-,20). (2.130)
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As demonstrated in the proof of Theorem [2.3.2] since §4 + J_ cycles around zg
clockwise once:

n(dy +9d_,2) = —1, (2.131)
we conclude n (7, z0) = +1. |

Remark 12. We can use Theorem [2.2.3] to show this claim.
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