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Chapter 0

Abstract

In this note, we prove the Jordan curve theorem: a closed curve with no self-
intersection in the complex plane C divides C into exactly two connected com-
ponents – one is unbounded and the other is bounded.
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Chapter 1

Preliminaries

1.1 Sets and Maps

We assume some working knowledge of informal set theory including sets and
corresponding membership relation ∈, subsets, supersets, the empty set ∅, union,
intersection, set difference, complement, and the like.

1.1.1 Sets and Maps

Definition 1.1.1 (Complement). Let X be a set and A ⊂ X be a subset. We
denote ¬A = X −A = {x ∈ X | x ̸∈ A}.

Theorem 1.1.1 (Empty Intersection and Empty Union). Let X be a set, Λ
be an index set, and {Aλ ⊂ X | λ ∈ Λ} be a Λ-indexed set of subsets of X.
The empty intersection

⋂
λ∈∅Aλ is the underlying set X and the empty union⋃

λ∈∅Aλ is the empty set ∅.

Proof. By definition:⋂
λ∈Λ

Aλ := {x ∈ X | ∀λ ∈ Λ : x ∈ Aλ} . (1.1)

For the empty intersection, the condition is vacuously true. Hence,
⋂

λ∈∅Aλ =
X. Similarly: ⋃

λ∈Λ

Aλ := {x ∈ X | ∃λ ∈ Λ : x ∈ Aλ} . (1.2)

If the index set is empty, the condition is always false. Hence,
⋃

λ∈∅Aλ = ∅. ■

Remark 1. We also have:

¬
⋂
λ∈Λ

Aλ := {x ∈ X | ∃λ ∈ Λ : x ̸∈ Aλ} =
⋃
λ∈Λ

¬Aλ (1.3)
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and
¬
⋃
λ∈Λ

Aλ := {x ∈ X | ∀λ ∈ Λ : x ̸∈ Aλ} =
⋂
λ∈Λ

¬Aλ. (1.4)

Theorem 1.1.2. Let X be a set. For {Vα ⊂ X | α ∈ A} and {Wβ ⊂ X | β ∈ B},(⋃
α∈A

Vα

)
∩

⋃
β∈B

Wβ

 =
⋃

(α,β)∈A×B

Vα ∩Wβ . (1.5)

Similarly, (⋂
α∈A

Vα

)
∪

⋂
β∈B

Wβ

 =
⋂

(α,β)∈A×B

Vα ∪Wβ . (1.6)

Proof.(⋃
α∈A

Vα

)
∩

⋃
β∈B

Wβ

 = {x ∈ X | ∃α ∈ A : x ∈ Vα}

∩ {x ∈ X | ∃β ∈ B : x ∈ Wβ}
= {x ∈ X | ∃(α, β) ∈ A×B : x ∈ Vα ∩Wβ}

=
⋃

(α,β)∈A×B

Vα ∩Wβ .

(1.7)

Similarly,(⋂
α∈A

Vα

)
∪

⋂
β∈B

Wβ

 = {x ∈ X | ∀(α, β) ∈ A×B : x ∈ Vα ∪Wβ}

=
⋂

(α,β)∈A×B

Vα ∪Wβ .

(1.8)

■

For a given map f : X → Y , there are two induced maps:

• Direct image f : 2X → 2Y ;U 7→ {y ∈ Y | ∃u ∈ U : y = fu}

• Preimage f← : 2Y → 2X ;W 7→ {x ∈ X | fx ∈ W}

Theorem 1.1.3 (Properties of Preimage). Let X and Y be sets and f : X →
Y be a map. The preimage map f← preserves the following elementary set
operations:

• f←
(⋃

λ∈Λ Bλ

)
=
⋃

λ∈Λ f←Bλ

• f←
(⋂

λ∈Λ Bλ

)
=
⋂

λ∈Λ f←Bλ
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• f← (B1 −B2) = f←B1 − f←B2

where Λ is an arbitrary index set, B1, B2, Bλ are all subspaces in Y for each
λ ∈ Λ.

Proof. The first two equations are almost identical:

p ∈ f←

(⋃
λ∈Λ

Bλ

)
⇔ fp ∈

⋃
λ∈Λ

Bλ

⇔ ∃λ ∈ Λ : fp ∈ Bλ

⇔ ∃λ ∈ Λ : p ∈ f←Bλ

⇔ p ∈
⋃
λ∈Λ

f←Bλ

(1.9)

and

p ∈ f←

(⋂
λ∈Λ

Bλ

)
⇔ fp ∈

⋂
λ∈Λ

Bλ

⇔ ∀λ ∈ Λ : fp ∈ Bλ

⇔ ∀λ ∈ Λ : p ∈ f←Bλ

⇔ p ∈
⋂
λ∈Λ

f←Bλ

(1.10)

for each p ∈ A.
Recalling B1 −B2 = {x ∈ A | x ∈ B1 ∧ x ∈ ¬B2} = B1 ∩ ¬B2, and

f← (¬B2) = {x ∈ X | fx ∈ ¬B2} = X − f←B2 = ¬f←B2, (1.11)

we have

f← (B1 −B2) = f← (B1 ∩ ¬B2)

= f←B1 ∩ f← (¬B2)

= f←B1 ∩ ¬f←B2

= f←B1 − f←B2.

(1.12)

Thus, the preimage f← : 2Y → 2X preserves union, intersection, and set-difference.
■

1.2 Topological Spaces

A topological space is a structured set in which the concept of convergence can
be defined.
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1.2.1 Basic Definitions

Definition 1.2.1 (Topological Spaces). Let X be a set. A topology on X is a
subset of its subsets T ⊂ 2X that closed under:

• Arbitrary Union

Each union of members in T is also a member of T .

• Finite Intersection

Each finite intersection of members of T is also a member of T .

As shown in Theorem 1.1.1, the union of an empty family of sets in X is ∅, and
the intersection of an empty family of sets in X is X. Hence, we may add the
following, yet redundant, conditions:

• Both ∅ and X are members of T .

The pair (X, T ) is called a topological space. Any member in T is called an
open subset of X. In particular, both ∅ and X are open subsets in X. A subset
C ⊂ X is called closed iff the complement ¬C := X−C is open, namely ¬C ∈ T .
Since ∅ = X − X and X = X − ∅, both ∅ and X are clopen. Dually, closed
subsets are closed under finite union and arbitrary intersections.

Let Y ⊂ X be a subset of a topological space (X, T ). The induced topology
on Y is

TY := {Y ∩ U | U ∈ T } . (1.13)

The pair (Y, TY ) is called a subspace of (X, T ).

Lemma 1.2.1. Let (X, T ) be a topological space and C1 ⊂ C2 ⊂ X. If C1, C2 ⊂
X are both closed, then C1 ⊂ C2 is closed relative to the subspace topology on
C2.

Proof. Let ¬2C1 := C2 − C1:

¬2C1 = C2 ∩ ¬C1. (1.14)

Since ¬C1 ∈ T , i.e., ¬C1 ⊂ X is open, C2 ∩ ¬C1 ⊂ C2 is open relative to the
subspace topology. ■

Definition 1.2.2 (Neighborhoods and Open Subspaces). Let (X, T ) be a topo-
logical space, and p ∈ X be a point. A subspace U ′ ⊂ X is called a neighborhood
of p iff there exists some U ∈ T such that p ∈ U and U ⊂ U ′. Let Np be the
set of all neighborhoods of p in X relative to T .

Lemma 1.2.2. Let (X, T ) be a topological space. A subspace U ⊂ X is open,
U ∈ T , iff U is a neighborhood of every point in it.
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Proof. (⇒) Suppose U ∈ T . Then, for each p ∈ U , U is an open neighborhood
of p.

(⇐) Conversely, suppose U is a neighborhood to its points. For p ∈ U , let
Vp ∈ T be an open subspace such that p ∈ Vp and Vp ⊂ U . Then, we conclude
U =

⋃
p∈U Vp since:

U ⊂
⋃
p∈U

Vp ⊂ U. (1.15)

Hence U is open. ■

Definition 1.2.3 (Limit Points and Closure). Let A ⊂ (X, T ) be a subspace.
A point p ∈ X is called a limit point of A iff each neighborhood of p contains
at least one point of A distinct from p:

∀U ′ ∈ Np : U ′ ∩A− {p} ≠ ∅. (1.16)

Let A′ denote the set of all limit points. We call A := A ∪ A′ the closure of A
in X relative to T .

Lemma 1.2.3. Let A ⊂ (X, T ) be a subspace. For any point p ∈ X, p ∈ A iff

∀U ′ ∈ Np : U ′ ∩A ̸= ∅. (1.17)

Proof. (⇒) Let p ∈ A:

• p ∈ A case

For each neighborhood U ′ ∈ Np, p ∈ U ′ ∩A.

• p ̸∈ A case

For each neighborhood U ′ ∈ Np, U
′ ∩A = U ′ ∩A− {p} ≠ ∅ holds.

(⇐) Let p ∈ X. Suppose U ′ ∩A ̸= ∅ whenever U ′ is a neighborhood of p.

• p ∈ A case

Since A ⊂ A, p ∈ A.

• p ̸∈ A case

Let U ′ ∈ Np. Since p ̸∈ A but p ∈ U ′, p ̸∈ U ′ ∩ A. Hence, U ′ ∩ A =
U ′ ∩A− {p} ≠ ∅, which means p is a limit point of A.

■

Theorem 1.2.1 (Characterization of Closed Subspaces). A subspace A ⊂
(X, T ) is closed iff A = A.

Proof. (⇒) Suppose A ⊂ (X, T ) is closed. Then ¬A ∈ T . Let p ∈ ¬A. Since
¬A is an open neighborhood of p such that ¬A ∩ A = ∅, p is not a limit point
of A by Lemma 1.2.3. Therefore p ̸∈ A. Since ¬A ⊂ ¬A is shown, we obtain
A ⊃ A; with the inclusion A ⊂ A, we conclude A = A.
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(⇐) Suppose A = A. We will show ¬A is open. Let p ∈ ¬A. Since p ∈ ¬A,
p is not a limit point of A. Thus, there is some neighborhood U ′ ∈ Np with
U ′∩A = ∅ by Lemma 1.2.3. We obtain U ′ ⊂ ¬A. That is, ¬A is a neighborhood
of p. As p ∈ ¬A is arbitrary, by Lemma 1.2.2, we conclude ¬A ∈ T . ■

Theorem 1.2.2 (Properties of Closures). Let A,B ⊂ (X, T ) be subspaces.

• The closure A is ⊂-smallest closed subspace of X containing A:

A =
⋂

{F ⊂ X | F ⊃ A ∧ ¬F ∈ T } (1.18)

• A ⊂ B ⇒ A ⊂ B

• A = A, i.e., the closure A of A is closed, and the closure-operation is
idempotent.

• A ∪B = A ∪B

• ∅ = ∅

Proof. Let Ã :=
⋂
{F ⊂ X | F ⊃ A ∧ ¬F ∈ T }. Since open subspaces are closed

under arbitrary union, the complements, i.e., closed subspaces are closed under
arbitrary intersection. Hence, Ã is closed. To show Ã is equal to A, let us
consider their complements:

⊂ Let p ∈ ¬Ã. Since ¬Ã is an open neighborhood of p such that ¬Ã∩Ã = ∅,
recalling Ã ⊃ A, we conclude ¬Ã ∩A = ∅:

∅ ⊂ ¬Ã ∩A ⊂ ¬Ã ∩ Ã = ∅. (1.19)

Hence, by Lemma 1.2.3, p is not a limit point of A, i.e., p ∈ ¬A:

¬Ã ⊂ ¬A. (1.20)

⊃ Let p ∈ ¬A. Since p is not a limit point of A, there exists an open
neighborhood U ∈ Np ∩ T such that U ∩ A − {p} = ∅. As p is not in A,
U ∩ A = ∅, thus A ⊂ ¬U . Thus, ¬U is a member of the intersection of
the right-hand side of (1.18). Hence, we obtain Ã ⊂ ¬U . Since p ∈ U and

U ⊂ ¬Ã, we conclude p ∈ ¬Ã:

¬Ã ⊃ ¬A. (1.21)

Therefore, we obtain A =
⋂

{F ⊂ X | F ⊃ A ∧ ¬F ∈ T }.

• A ⊂ B ⇒ A ⊂ B

Since any closed subspace containing B also contains A, A ⊂ B.

• A = A

Since A is given by an intersection of closed subspaces, A is closed. More-
over, A ⊂ A is the ⊂-smallest subspace containing A.
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• A ∪B = A ∪B

A ∪B is closed, and contains both A and B, hence A ∪ A ⊂ A ∪B. As
A ∪ B is closed, containing A ∪ B, ⊂-smallest property implies A ∪B ⊂
A ∪B.

• ∅ = ∅
Since ∅ is clopen and ∅ ⊂ ∅, the ⊂-smallest property ensures ∅ = ∅.

■

Remark 2 (Interior and Boundary). Let A ⊂ (X, T ) be a subspace. As a dual
concept of closure, the interior Aι of A is the ⊂-largest open set contained in A:

Aι =
⋃

{U ∈ T | U ⊂ A} . (1.22)

By Remark 1 in Theorem 1.1.1,

Aι =
⋃

{¬F ∈ T | ¬F ⊂ A}

=
⋃

{¬F ⊂ X | ¬F ∈ T ∧ F ⊃ ¬A}

= ¬
⋂

{F ⊂ X | ¬F ∈ T ∧ F ⊃ ¬A}

= ¬¬A.

(1.23)

So, a subspace A ⊂ X is open iff A = Aι, since ¬Aι = ¬A. We call ∂A := A−Aι

the boundary of A. Moreover, ∂A = ¬(Aι)− ¬
(
A
)
:

¬(Aι)− ¬
(
A
)
= (X −Aι)− (X −A)

=
{
x ∈ X | x ̸∈ Aι ∧ x ̸∈ (X −A)

}
=
{
x ∈ X | x ̸∈ Aι ∧ x ∈ A

}
= A−Aι.

(1.24)

Theorem 1.2.3 (Subspaces and Closures). Let (X, T ) be a topological space
and (Y, TY ) ⊂ (X, T ) be a subspace. For A ⊂ Y , the closure AY relative to TY
is Y ∩A, where A is the closure of A ⊂ X relative to T .

Proof. It suffices to show A′Y = Y ∩ A′ since AY = A′Y ∪ A and Y ∩ A =
Y ∪ (A ∪A′) = (Y ∩A) ∪ (Y ∩A′) = A ∪ (Y ∩A′).

Let p ∈ A′Y and NY p be the set of neighborhood of p relative to TY :

∀U ′ ∈ NY p : ∃U ∈ T : p ∈ (U ∩ Y ) ⊂ U ′. (1.25)

Note that (U ∩ Y ) ∈ TY if U ∈ T . Since p ∈ A′Y ,

∀U ′ ∈ NY p : U ′ ∩A− {p} ≠ ∅, (1.26)

i.e.,
∀U ∈ Np ∩ T : (U ∩ Y ) ∩A− {p} ≠ ∅, (1.27)
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we obtain p ∈ (Y ∩ A)′ relative to T . Recalling A ⊂ Y and p ∈ Y , we obtain
p ∈ Y ∩A′.

Conversely, let p ∈ Y ∩A′ relative to T :

∀U ′ ∈ Np : U ′ ∩A− {p} ≠ ∅. (1.28)

Since A ⊂ Y , it is equivalent to

∀U ′ ∈ Np : U ′ ∩ (A ∩ Y )− {p} ≠ ∅. (1.29)

Now, U ′ ∩ Y contains an open (U ∩ Y ) ∈ TY with p ∈ U ∩ Y . That is, U ′ ∩ Y
is a neighborhood of p relative to TY , namely U ′ ∩ Y ∈ NY p, moreover p ∈ A′Y .

Hence, we establish A′Y = Y ∩A′, and AY = Y ∩A. ■

1.2.2 Separation Axioms

Definition 1.2.4. The following axioms describe how a topology can distin-
guish points in the underlying set:

T2 A T2 space – a Hausdorff space – is a topological space (X, T ) in which
each of two distinct points have disjoint neighborhoods, that is, if p ̸= q,
there are U ′ ∈ Np and V ′ ∈ Nq with U ′ ∩ V ′ = ∅.

T4 A T4 space is a Hausdorff space in which each disjoint closed subspaces
have disjoint neighborhoods.

1.2.3 Basic Open Sets

. . . we can to an extent preassign the notion of nearness desired. [Dug66]

Definition 1.2.5 (Subbases and Generated Topology). Let X be a set and
S ⊂ 2X be a set of subsets in X. As 2X is a topology of X,

τS :=
{
T ⊂ 2X | T is a topology on X with S ⊂ T

}
(1.30)

is non-empty. Their intersection:⋂
τS :=

⋂
{T ∈ τS} (1.31)

is called the topology generated by S. It is the ⊂-smallest topology containing S.
For the generated topology, the generating set S is called the subbbasic open

set, in short, a subbase.

Remark 3 (Basis). No further conditions for being a subbase of some topology.
If S satisfies:

1. S covers X

For each x ∈ X, there is a B ∈ S with x ∈ B. This condition guarantees
that X is open.
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2. Binary Intersection

Let B1, B2 ∈ S. If x ∈ B1 ∩ B2, there is a B3 ∈ S with x ∈ B3 and
B3 ⊂ B1 ∩B2. This condition guarantees that B1 ∩B2 is open.

Then S is called the set of basic open sets, in short, a basis for the topology⋂
τS of X.

Theorem 1.2.4. Let X be a set, S ⊂ 2X be a basis – S satisfies both conditions
1 and 2 – and TS be the set of all unions of S. TS is a topology on X. Moreover,
TS =

⋂
τS .

Proof. As the condition 1 ensures S covers X, we have X ∈ TS . If we take the
empty union, ∅ ∈ TS . By definition, TS is closed under arbitrary union. The
condition 2 guarantees TS is closed under binary, hence any finite intersection.
Therefore, TS forms a topology on X.

Since S ⊂ TS holds, TS ∈ τS , hence
⋂
τS ⊂ TS . To show the other inclusion,

let U ∈ TS . By construction, there exists BU ⊂ S with

U =
⋃

BU =
⋃

{V ∈ BU} . (1.32)

As BU ⊂ S, and any member T ∈ τS contains S, we obtain BU ⊂ T for each
T ∈ τS . Thus, BU ⊂ T holds for each T ∈ τS . I.e., U ∈

⋂
τS . ■

1.2.4 Continuous Maps

For given topological space (X, TX) and (Y, TY ), and a map between the under-
lying sets f : X → Y , we use f← to associate the topology since f← preserves
the elementary set operations as shown in Theorem 1.1.3:

Definition 1.2.6 (Continuous Maps). Let (X, TX) and (Y, TY ) be topological
spaces. A map f : X → Y is called continuous iff the preimage of each open
subspace in Y is open in X. That is, f← maps TY ⊂ 2Y into TX :

f← : TY → TX . (1.33)

The set of all continuous maps from X to Y is denoted by C0(X,Y ).

Theorem 1.2.5 (Characterizations of Continuity). Let (X, TX) and (Y, TY ) be
topological spaces, and f : X → Y be a map. The following are equivalent:

1. f ∈ C0(X,Y ) by means of Definition 1.2.6.

2. For a subbase (or a basis) SY ⊂ TY , f←SY ⊂ TX .

3. The preimage of a closed subspace in Y is closed in X.

4. For each x ∈ X and for each neighborhood V ′ ∈ Nfx, there exists a
neighborhood U ′ ∈ Nx such that fU ′ ⊂ V ′.

5. fA ⊂ fA for every A ⊂ X.
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6. f←B ⊂ f←B for every B ⊂ Y .

Remark 4 (ϵδ-Continuity). The condition 4 is the topological version of ϵ-δ
definition of continuity.

Proof. (1 ⇔ 2) As SY ⊂ TY , f←|SY : SY → TX . Conversely, suppose f←SY ⊂
TX is the case. Let W ∈ TY . Since TY is generated by SY , W is given by some,
not necessarily finite, union of finite intersections of members in SY :

W =
⋃
λ∈Λ

(
B

(λ)
1 ∩ · · · ∩B

(λ)
jλ

)
, (1.34)

where B
(λ)
1 · · ·B(λ)

jλ
∈ SY for each λ ∈ Λ. Applying Theorem 1.1.3, we obtain

f←W =
⋃
λ∈Λ

f←
(
B

(λ)
1 ∩ · · · ∩B

(λ)
jλ

)
=
⋃
λ∈Λ

(
f←B

(λ)
1

)
∩· · ·∩

(
f←B

(λ)
jλ

)
. (1.35)

Since
(
f←B

(λ)
1

)
∩· · ·∩

(
f←B

(λ)
jλ

)
∈ TX andW is a union of such open subspaces

in X, we conclude f←W ∈ TX .
(1 ⇔ 3) By Theorem 1.1.3,

f← (¬A) = f← (Y −A) = X − f←A = ¬f←A (1.36)

for every A ⊂ X.
(1 ⇒ 4) Let x ∈ X, V ′ ∈ Nfx, and V ∈ TY s.t., fx ∈ V and V ⊂ V ′. As f

is continuous, f←V ∈ TX . Since x ∈ f←V , we may set U ′ = f←V .
(4 ⇒ 5) Let A ⊂ X and x ∈ A; we will show fx is a member of fA. Consider

V ′ ∈ Nfx; as we assume 4, there exists U ′ ∈ Nx with fU ′ ⊂ V ′. Since x ∈ A,
by Lemma 1.2.3, U ′ ∩A ̸= ∅ holds. Hence, fx ∈ fA:

∅ ⊊ f (U ′ ∩A) ⊂ fU ′ ∩ fA ⊂ V ′ ∩ fA. (1.37)

(5 ⇒ 6) Let B ⊂ Y and A := f←B. As we assume 5,

f
(
f←B

)
= fA ⊂ fA = f (f←B) ⊂ B. (1.38)

Thus, f←B ⊂ f←B.
(6 ⇒ 3) Let B ⊂ Y be a closed subspace. As we assume 6, f←B ⊂ f←B.

Since B = B, we conclude f←B = f←B:

f←B ⊂ f←B ⊂ f←B ⊂ f←B. (1.39)

See Theorem 1.2.1. ■

Lemma 1.2.4 (Universal Property of Relative Topology). Let Y ⊂ (X, T ) be
a subspace. The relative topology TY defined in Definition 1.2.1 can be charac-
terized as the ⊂-smallest topology on Y for which the inclusion map:

i : Y ↪→ X; y 7→ y (1.40)

is continuous, namely i ∈ C0(Y,X).
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Proof. Let TY ′ be an arbitrary topology on Y . Suppose i : Y ↪→ X is continuous
relative to (X, T ) and

(
Y, TY ′

)
. We will show that TY ′ ⊃ TY .

Let U ∈ T . As i ∈ C0
((
Y, TY ′

)
, (X, T )

)
, the preimage i←U is open in(

Y, TY ′
)
:

i←U = U ∩ Y ∈ TY ′. (1.41)

Since U is arbitrary, it follows that any open subspace in Y relative to TY ,
U ∩ Y ∈ TY is a member of TY ′, hence TY ⊂ TY ′. ■

Theorem 1.2.6 (Properties of Continuous Maps). Let (X, TX) , (Y, TY ) , (Z, TZ)
be topological spaces.

• If f ∈ C0(X,Y ) and g ∈ C0(Y,Z), the composition gf ∈ C0(X,Z).

• If f ∈ C0(X,Y ) and A ⊂ X, the restriction f |A : A → Y is continuous
relative to the relative topology on A.

• If f ∈ C0(X,Y ), the coristriction of f on its image is continuous:

f ∈ C0 (X, fX) . (1.42)

Proof. Suppose f ∈ C0((X,Y ), g ∈ C0(Y,Z), and A ⊂ X.

• Since f← : TY → TX and g← : TZ → TY , and (g ◦ f)← = f← ◦ g←, the
continuity of the composition g ◦ f follows:

(g ◦ f)← : TZ → TX . (1.43)

• Let i : A ↪→ X. Since
f |A = f ◦ i (1.44)

and as shown above i ∈ C0(A,X) relative to TA, the composition is con-
tinuous.

• For each V ∈ TV , i.e., for each open subspace V ∩ fX in fX,

f← (V ∩ fX) = f←V ∩ f← (fX) = f←V. (1.45)

Since f←V is open in X, the restriction f : X → fX is continuous.

■

Definition 1.2.7 (Homeomorphisms and Topological Invariance). Let (X, TX)
and (Y, TY ) be topological spaces. A map f : X → Y is called a homeomorphism
– a topological isomorphism – iff the following conditions hold:

• The underlying map f : X → Y is bijective.

• Both f and f−1 are continuous.
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If f is a homeomorphism, it is denoted by f : X ∼= Y . Two spaces X and Y are
homeomorphic, written X ∼= Y , iff there is a homeomorphism between them.
It is worth mentioning that a homeomorphism f : X ∼= Y is an open map –
the image of an open subspace U ∈ TX along f is open fU ∈ TY , since f−1

is continuous. Moreover, a homeomorphism f : X ∼= Y is a bijection for the
underlying set and the associated topologies:

f : X ∼= Y

f−1 : TY ∼= TX
(1.46)

Thus, any topological property about X is mapped to that of Y . We call any
property of spaces a topological invariant iff whenever it is true for one space,
it is also varied for every homeomorphic space.

Theorem 1.2.7. Homeomorphism is an equivalence relation in the class of all
topological spaces.

Proof. Observe:

• Reflexive

For any topological space X, 1X : X ∼= X.

• Symmetric

If f : X ∼= Y , Y ∼= X via f−1.

• Transitive

If f : X ∼= Y and g : Y ∼= Z, then g ◦ f : X ∼= Z.

See Theorem 1.2.6. ■

1.2.5 Connected Spaces

Definition 1.2.8 (Connectedness). A topological space is disconnected iff it
is given by the union of two nonempty disjoint open subspaces: a topological
space is connected iff it is not disconnected. A subspace is connected iff it is
connected relative to its subspace topology. We call a connected open space a
domain.

Theorem 1.2.8 (Characteristics of Connectedness). For a topological space
(X, T ), TFAE:

1. (X, T ) is connected.

2. The only clopen subspaces of (X, T ) are ∅ and X.

3. Any f ∈ C0(X,2) is constant, where 2 is the two points set {0, 1} with
discrete topology {∅, {0}, {1}, {0, 1}}.
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Proof. (1 ⇒ 2) Suppose (X, T ) is a connected space. Let A ⊂ X be a non-
empty clopen subspace of (X, T ). Then X is expressed as A∪¬A of the disjoint
union of open subspaces. Since X is connected and A ̸= ∅, ¬A must be empty.

(2 ⇒ 3) Assume (X, T ) has only two clopen subspaces ∅ and X. Let f ∈
C0(X,2). Suppose, for contradiction, that f is not constant. Then, both f←{0}
and f←{1} are non-empty. Moreover, ¬f←{0} = f←{1} ̸= ∅ implies f←{0} is
clopen such that ∅ ⊊ f←{0} ⊊ X, which is absurd.

(3 ⇒ 1) Assume no continuous non-constant map exists from X to 2. Sup-
pose, for contradiction, that (X, T ) is disconnected, i.e., there exists a clopen
non-empty subspace ∅ ⊊ A ⊊ X. Define f : X → 2 by f |A = 1 and other-
wise zero. By definition, f is non-constant, since ¬A ̸= ∅. Hence f←∅ = ∅
and f←{0, 1} = X. Moreover, both f←{0} = ¬A and f←{1} = A are open.
Therefore, such a non-constant f is continuous, which is absurd. ■

Theorem 1.2.9. The continuous image of a connected space is connected.

Proof. LetX be a connected space, Y be a topological space, and f ∈ C0(X,Y ).
Suppose, for contradiction, that the continuous image fX is disconnected. By
Theorem 1.2.8, there exists a non-constant continuous g ∈ C0 (fX,2). It follows
g (fX) = {0, 1}. The g ◦ f : X → 2 is continuous by Theorem 1.2.6. Hence, it
follows that (g ◦ f)X = {0, 1} is a non-constant continuous map on a connected
space X, which is absurd. ■

Theorem 1.2.10. Let X be a topological space and A ⊂ X be a connected sub-
space. Then, any B ⊂ X satisfying A ⊂ B ⊂ A is also connected; particularly,
the closure of connected subspace is connected.

Proof. Let f ∈ C0(B,2). Since A is connected, f |A ∈ C0(A,2) becomes con-
stant by Theorem 1.2.6. Let {n} := f |A ⊂ {0, 1}; relative to the topology on 2,
such a singleton {n} ⊂ 2 is clopen. Since B ⊂ A, we have B = A∩B. As shown
in Theorem 1.2.3, A∩B = AB , we conclude B = AB . Since f is continuous, we
may apply Theorem 1.2.5 for the relative topology TB :

fB = fAB ⊂ fA = {n} = {n} = fA. (1.47)

Therefore, f |B is also constant, and hence B is connected by Theorem 1.2.8. ■

Theorem 1.2.11. If a set of non-empty connected spaces share at least one
common point, their union is also connected.

Proof. Let {Xλ | λ ∈ Λ} be a set of non-empty connected spaces, and x ∈⋂
λ∈Λ Xλ. Consider f ∈ C0

(⋃
λ∈Λ Xλ,2

)
. Let λ ∈ Λ. By Theorem 1.2.6:

f |Xλ
∈ C0 (Xλ,2) . (1.48)

Since Xλ is connected, f |Xλ
is constant; since x ∈ Xλ, f |Xλ

x = fx. Hence, f
is constant. By Theorem 1.2.8, we conclude

⋃
λ∈Λ Xλ is connected. ■
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Definition 1.2.9 (Connected Components). Let X be a topological space and
x ∈ X. The component Cx of x in X is the union of all connected subspaces
in X containing x. In other words, Cx is ⊂-largest connected subspace in Y
containing x. By Theorem 1.2.8, Cx ⊂ X is a closed subset, because both
Cx and Cx are connected and its ⊂-largest property Cx ⊂ Cx with the trivial
inclusion Cx ⊂ Cx.

Theorem 1.2.12. Let X be a topological space. The union of any set of con-
nected subspaces in X having at least one point in common is connected. Hence,
the component Cx is connected for each x ∈ X.

Proof. Let C :=
⋃

λ∈Λ Aλ be the union of connected subspace in X and a ∈⋂
λ∈Λ Aλ is a common point. Consider an arbitrary continuous map f ∈

C0(C,2). Let λ ∈ Λ. Since Aλ is connected, the restriction f |Aλ
is constant

by Theorem 1.2.8. Since a ∈ Aλ, we obtain fx = fa for each x ∈ Aλ. Thus
f |Aλ

= f(a) holds. Since λ ∈ Λ is arbitrary, we conclude that f is constant. ■

Theorem 1.2.13. Let X be a topological space. The set of all distinct compo-
nents in X forms a partition of X.

Proof. Let x, y ∈ X. If Cx ∩Cy ̸= ∅, by Theorem 1.2.12, their union Cx ∪Cy is
connected. Since Cx ⊂ Cx∪Cy and Cx is ⊂-largest connected subset containing
x, we conclude Cx = Cx ∪ Cy = Cy. Hence, if Cx ̸= Cy, then they are disjoint
Cx ∩ Cy = ∅. ■

1.2.6 Compact Spaces

Definition 1.2.10 (Open Covers). Let (X, T ) be a topological space and Y ⊂
X be a subspace. Any set of subspaces {Aλ ⊂ X | λ ∈ Λ} is called a cover of Y
iff Y ⊂

⋃
λ∈Λ Aλ. If a cover {Aλ | λ ∈ Λ} consists of open subspaces of X, we

call it an open cover.
For a cover {Aλ | λ ∈ Λ} of Y , a subcover is a subset {Aλ | λ ∈ Λ′}, Λ′ ⊂ Λ,

that is also a cover of Y .

Definition 1.2.11 (Compact Spaces). A topological space (X, T ) is compact
iff each open cover has a finite subcover.

Theorem 1.2.14. The continuous image of a compact space is compact.

Proof. Let (X, TX) be a compact space, (Y, TY ) be a topological space, and
f ∈ C0(X,Y ). Consider an arbitrary open cover V ⊂ TY of fX ⊂ Y . Then
{f←V | V ∈ V} is an open cover of X; for every x ∈ X, fx ∈ Y is covered by
some V ∈ V:

x ∈ f←V. (1.49)

Since X is compact, there exists a finite subcover X ⊂ f←V1 ∪ · · · ∪ f←Vt. We
have the desired finite subcover {V1, · · · , Vt} ⊂ V, since for each x ∈ X, as
x ∈ f←Vs for some s ∈ {1, · · · , t}, it follows fx ∈ Vs. ■
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Theorem 1.2.15. A closed subspace of a compact space is compact.

Proof. Let (X, TX) be a compact space and C ⊂ X be a closed subspace. Con-
sider an open cover U ⊂ TX of C. Since ¬C ⊂ X is open, we have an open
cover of X:

U ∪ {¬C}. (1.50)

Since X is compact, there is a finite subcover {U1, · · · , Un} ⊂ U ∪ {¬C}. Since
it also covers C ⊂ X, we have the desired finite subcover of C, namely C is
covered by {U1, · · · , Un} − {¬C}. ■

Theorem 1.2.16. A compact subspace of a Hausdorff space is closed.

Proof. Let (X, T ) be a Hausdorff space and K ⊂ X be a compact subspace. If
K = X, X ⊂ X is clopen. So, suppose K ⊊ X, and let x ∈ ¬K. For each
y ∈ K, as x ̸= y, there are disjoint open subspaces Uy, Vy ∈ T such that

x ∈ Uy ∧ y ∈ Vy. (1.51)

Then the open cover {Vy | y ∈ K} has a finite subcover:

K ⊂ V := Vy1
∪ · · · ∪ Vyn

. (1.52)

Define U := Uy1 ∩· · ·∩Uyn . Both U and V are open in X. Moreover, U ∩V = ∅,
since, if z ∈ V , there is yp with z ∈ Vyp

but z ̸∈ Uyp
⊃ U . Since K ⊂ V , U and

K are disjoint, namely
U ⊂ ¬K. (1.53)

Since x ∈ U , we conclude that ¬K is a neighborhood of x. By Lemma 1.2.2,
¬K ⊂ X is open. ■

Theorem 1.2.17. A continuous bijection from a compact space to a Hausdorff
space is homeomorphic.

Proof. Let (K, TK) be a compact space, (X, TX) be a Hausdorff space, and
f ∈ C0(K,X). Suppose there is a map g : X → K with gf = 1K and fg = 1X .
We will show g is continuous. Let V ∈ TK . Consider ¬V := K − V of the
corresponding closed subspace in K. By Theorem 1.2.15, ¬V is a compact
subspace in K; its continuous image f¬V is a compact subspace in X. By
Theorem 1.2.15, such a compact subspace f¬V is closed. Now

g←¬V = {x ∈ X | gx ∈ ¬V } = {x ∈ X | x = fgx ∈ f¬V } = f¬V (1.54)

implies g←¬V ⊂ X is closed. By the condition 3 in Theorem 1.2.5, we conclude
g is continuous. ■
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1.2.7 Product Spaces

Let Λ ̸= ∅ be an index set and {Xλ | λ ∈ Λ} be a Λ-indexed set of sets. The
Cartesian product of {Xλ | λ ∈ Λ}: ∏

λ∈Λ

Xλ (1.55)

is given by the set of all maps
{
f : Λ →

⋃
λ∈Λ | ∀λ ∈ Λ : fλ ∈ Xλ

}
. For instance,∏

λ∈{1,2} = X1 ×X2 is given by

{f : {1, 2} → X1 ∪X2 | f1 ∈ X1 ∧ f2 ∈ X2} (1.56)

i.e., each member in X1 ×X2 is essentially a pair (x1, x2), where x1 = f1 ∈ X1

and x2 = f2 ∈ X2.
There is a natural projection for each α ∈ Λ:

pα :
∏
λ∈Λ

Xλ → Xα; f 7→ fα. (1.57)

Definition 1.2.12 (Product Topologies). Let Λ ̸= ∅ be an index set and
{(Xλ, Tλ) | λ ∈ Λ} be a Λ-indexed set of topological spaces. For the Carte-
sian product of the underlying sets

∏
λ∈Λ Xλ, the topology generated by the

following subbase: ⋃
α∈Λ

{pα←U | U ∈ Tα} (1.58)

is called the product topology; with this product topology, we call
∏

λ∈Λ Xλ the
product space.

Let us consider finite products of topological spaces and compactness.

Theorem 1.2.18. Let X × Y be a product of topological spaces. If X × Y is
compact relative to the product topology, then X is also compact.

Proof. Let U ⊂ TX be an open cover of X. For each U ∈ U , consider

pX
←U = U × Y. (1.59)

Since pX
←U is a subbasic open subspace inX×Y , it is open. Then {pX←U | U ∈ U}

forms an open cover of the compact X×Y . Therefore, there is a finite subcover:

X × Y = pX
←U1 ∪ · · · ∪ pX

←Un. (1.60)

Hence, {U1, . . . , Un} is the desired finite subcover. ■

Theorem 1.2.19 (Finite Tychonoff Theorem). The product of finite compact
spaces is compact.
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Proof. We will show the binary case; let (X, TX) and (Y, TY ) be compact spaces.
Let O be an open cover of X × Y and x ∈ X. Since O covers X × Y :

∀y ∈ Y : ∃O(x,y) ∈ O : (x, y) ∈ O(x,y). (1.61)

Since O(x,y) ⊂ X×Y is open relative to the product topology, there are U(x,y) ∈
TX and V(x,y) ∈ TY such that

(x, y) ∈ U(x,y) × V(x,y) ⊂ O(x,y), (1.62)

where U(x,y) × V(x,y) is pX
←U(x,y) ∩ pY

←V(x,y) =
(
U(x,y) × Y

)
∩
(
X × V(x,y)

)
.

Now
{
V(x,y) | y ∈ Y

}
covers Y ; there is a finite subcover:

Y = V(x,yj(x,1)) ∪ · · · ∪ V(x,yj(x,mx)). (1.63)

Define:
Ux := U(x,yj(x,1)) ∩ · · · ∩ U(x,yj(x,mx)). (1.64)

Since it is a finite intersection of open subspaces in X, Ux ∈ TX . Moreover, Ux

is an open neighborhood of x.
We, then, have an open cover of X, {Ux | x ∈ X}. There exists a finite

subcover:
X = Ux1

∪ · · · ∪Xxn
. (1.65)

Consider a finite subset of O:{
O(x,y) | x ∈ {x1, · · · , xn} , y ∈

{
yj(x,1), · · · , yj(x,mx)

}}
. (1.66)

Note that the indices for y varies as x ∈ {x1, · · · , xn}. We will show that it is
the desired finite subcover of X × Y .

Let (ξ, η) ∈ X × Y . Since (1.65) holds, there is some xp with ξ ∈ Uxp
. For

such xp, since
Y = V(xp,yj(xp,1)) ∪ · · · ∪ V(

xp,yj(xp,mxp )

) (1.67)

there is some yj(xp,i) with η ∈ V(xp,yj(xp,i)). For the given pair (ξ, η), we con-

clude:
(ξ, η) ∈ Uxp × V(xp,yj(xp,i)) ⊂ O(xp,yj(xp,i)). (1.68)

Hence, (1.66) is the desired finite subcover of X × Y . ■

1.3 Metric Spaces

1.3.1 Topological Properties

Definition 1.3.1 (Metrics and Metric Spaces). Let X be a non-empty set. A
metric on X is a real-valued map d : X × X → R that satisfies the following
conditions:
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• Non-negative:

For every x, y ∈ X, d(x, y) ≧ 0.

• Distinguishable:

For every x, y ∈ X, d(x, y) = 0 iff x = y.

• Symmetric:

For every x, y ∈ X, d(x, y) = d(y, x).

• Triangle Inequality:

For each triple points,

d(x, z) ≦ d(x, y) + d(y, z). (1.69)

We call d(x, y) the distance between two points x and y in X. For a non-empty
subset A ⊂ X and x ∈ X, define the distance between A and x by

d(A, x) := inf {d(a, x) | a ∈ A} , (1.70)

where inf stands for the greatest lower bound. Since the possible minimum
value of the metric d is zero, d(A, x) ≧ 0 for each x ∈ X.

Remark 5 (Metric Spaces). Let X be a non-empty set and d be a metric on X.
Consider the set of open balls:

Bd := {Bϵ(x) | ϵ > 0 ∧ x ∈ X} , (1.71)

where
Bϵ(x) := {y ∈ X | d(x, y) < ϵ} . (1.72)

Lemma 1.3.1. The set of all open balls in X forms a basis.

Proof. Let X be a set, d be a metric on X, Bd is the set of all open balls in
X defined above. Recalling Definition 1.2.5, we will show that Bd satisfies the
conditions in Remark 3:

1. Since X ⊂
⋃

x∈X B1(x), Bd covers X.

2. Let ϵ1 > 0, ϵ2 > 0, and x1, x2 ∈ X. Consider B1 := Bϵ1(x1) and B2 :=
Bϵ2(x2). Suppose B1 ∩B2 ̸= ∅. Let x ∈ B1 ∩B2. Define

ϵ := min {ϵ1 − d(x1, x), ϵ2 − d(x2, x)} . (1.73)

Let y ∈ Bϵ(x):

d(y, x1) ≦ d(y, x) + d(x, x1) < ϵ1 − d(x, x1) + d(x, x1) = ϵ1. (1.74)

We obtain y ∈ B1; dually y ∈ B2 as well, hence:

y ∈ B1 ∩B2. (1.75)

We conclude Bϵ(x) ⊂ B1 ∩B2.
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Hence, Bd forms a basis of a topology on X. ■

With this generated topology, the set X with a metric d forms a topological
space. The pair (X, d) is called a metric space with the generated topology.

Remark 6. As an important example of metric space, consider C of the complex
plane, where the metric is induced by the standard Euclid norm:

|z| :=
√
(ℜz)2 + (ℑz)2 (1.76)

Lemma 1.3.2. For two complex numbers z and w, they are equal iff for every
ϵ > 0, |z − w| < ϵ holds.

Proof. (⇒) Suppose z = w. Then |z − w| = 0. Therefore, for every ϵ > 0,
|z − w| < ϵ.

(⇐) Conversely, suppose z ̸= w. Then, ϵ := |z − w| > 0. Hence, |z − w| ≦ ϵ
holds. ■

Lemma 1.3.3. A metric is continuous.

Proof. Let (X, d) be a metric space:

d : X ×X → R. (1.77)

For the product X ×X, the subbase of the product topology is given by

{U ×X | U ∈ TX} ∪ {X × V | V ∈ TX} (1.78)

where TX is the topology generated by the metric d on X, see Definition 1.2.12
and Lemma 1.3.1. Let 0 < s < t; for further discussion, let

(s < t) := {x ∈ R | s < x < t} (1.79)

be an open interval. We will show that the following preimage is open:

d← (s < t) = {(x, y) ∈ X ×X | s < d(x, y) < t} . (1.80)

Let (x, y) ∈ d← (s < t). Select a positive ϵ > 0 such that s < d(x, y) ± 2ϵ < t.
Consider Bϵ(x)×Bϵ(y). For any (x′, y′) ∈ Bϵ(x)×Bϵ(y),

d(x′, y′) ≦ d(x′, x) + d(x, y) + d(y, y′) < d(x, y) + 2ϵ < t (1.81)

and s < d(x, y)− 2ϵ < d(x′, y′) since

d(x, y) ≦ d(x, x′) + d(x′, y′) + d(y′, y) < d(x′, y′) + 2ϵ. (1.82)

It follows (x′, y′) ∈ d← (s < t) and, hence,

Bϵ(x)×Bϵ(y) ⊂ d← (s < t) . (1.83)

By Lemma 1.2.2, the preimage of an open interval d← (s < t) is open in X ×X
relative to the product topology. ■
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Remark 7 (ϵδ-Continuity). Intuitively speaking, the above proof can be ex-
pressed as follows.

For each x, x′, y, y′ ∈ X, the triangle inequality d(x′, y) ≦ d(x′, y′) + d(y, y′)
implies −d(x′, y′) ≦ d(y, y′)− d(x′, y). Hence,

d(x, y)− d(x′, y′) ≦ d(x, x′) + d(x′, y)− d(x′, y′) ≦ d(x, x′) + d(y, y′). (1.84)

Similarly, d(x′, y′)− d(x, y) ≦ d(x′, x) + d(y′, y) holds. Thus,

|d(x, y)− d(x′, y′)| ≦ d(x, x′) + d(y, y′). (1.85)

As (x′, y′) 99K (x, y) i.e., d(x, x′) 99K 0 and d(y, y′) 99K 0, we conclude d is
continuous d(x′, y′) 99K d(x, y).

Theorem 1.3.1. Let (X, d) be a metric space and A ⊂ X be a non-empty
subspace. For each point p ∈ X, p ∈ A iff d(A, p) = 0, where A is the closure
of A ⊂ (X, d) relative to the topology generated by d via Bd.

Proof. (⇒) Suppose p ∈ A. Let ϵ > 0. Since Bϵ(x) is an open neighborhood
around p,

Bϵ(p) ∩A− {p} ≠ ∅ (1.86)

by Definition 1.2.3. We may select q ∈ Bϵ(p)∩A−{p}. Since q ∈ A, and d(A, p)
is a lower bound of {d(a, p) | a ∈ A}:

d(A, p) ≦ d(q, p) < ϵ. (1.87)

Recalling ϵ > 0 is arbitrary and d(A, p) ≧ 0, by Lemma 1.3.2, we conclude
d(A, p) = 0.

(⇐) Consider the complement ¬A = X − A. If ¬A = ∅, nothing has to be
proven. Let p ∈ ¬A. Since ¬A ⊂ X is open, there is ϵ > 0 such that

Bϵ(p) ⊂ ¬A. (1.88)

For each a ∈ A, since a ̸∈ Bϵ(p), d(a, p) ≧ ϵ. That is, ϵ > 0 is a lower bound of
{d(a, p) | a ∈ A}:

d(A, p) ≧ ϵ > 0. (1.89)

Hence, d(A, p) ̸= 0 if p ̸∈ A. ■

Theorem 1.3.2. Metric spaces are T4 spaces.

Proof. Let (X, d) be a metric space.
First, we will show (X, d) is a Hausdorff space. Suppose x and y are distinct

points in X. Since x ̸= y,
ϵ := d(x, y) > 0. (1.90)

We will show Bϵ/2(x) ∩ Bϵ/2(y) = ∅. Suppose, for contradiction, that there
exists p ∈ Bϵ/2(x) ∩Bϵ/2(y). Then:

ϵ = d(x, y) ≦ d(x, p) + d(p, q) < ϵ/2 + ϵ/2 = ϵ, (1.91)
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which is absurd.
Consider two non-empty disjoint closed subspaces F1, F2 ⊂ X. Let p ∈ F1.

Since F1 = F1, by Theorem 1.3.1, d(F2, p) > 0. Define δp := 1
3d(F2, p) and

Up := Bδp(p), and

G1 :=
⋃

p∈F1

Up. (1.92)

Similarly, G2 :=
⋃

q∈F2
Vq, where δq := 1

3d(F1, q) > 0 and Vq := Bδq (q). By
definition, both G1 ⊃ F1 and G2 ⊃ F2, and they are open in X. We will show
G1 and G2 are disjoint. Suppose, for contradiction, that there is an r ∈ G1∩G2.
Then, there are some p ∈ F1 and q ∈ F2 such that r ∈ Bδp(p)∩Bδq (q). Without
loss of generality, δp ≦ δq:

3δp = d(F1, q) ≦ d(p, q) ≦ d(p, r) + d(r, q) < δp + δq ≦ 2δp, (1.93)

which is absurd. ■

Theorem 1.3.3. Let (X, d) be a metric space and A ⊂ X be a non-empty
subspace. The distance d(A, ) : X → R is continuous.

Proof. Let p, q ∈ X and a ∈ A:

d(A, p) ≦ d(a, p) ≦ d(a, q) + d(q, p) (1.94)

Therefore, d(A, p) − d(q, p) ≦ d(a, q), meaning that d(A, p) − d(q, p) is a lower
bound of {d(a, q) | a ∈ A}:

d(A, p)− d(q, p) ≦ d(A, q). (1.95)

Swapping p ↔ q, we obtain d(A, q)− d(p, q) ≦ d(A, p):

|d(A, p)− d(A, q)| ≦ d(p, q) (1.96)

As q 99K p, i.e., as d(p, q) 99K 0, |d(A, p)− d(A, q)| 99K 0.
Formally speaking, for any ϵ > 0, there is a δ > 0 for instance, δ := ϵ

2 such
that

|d(A, p)− d(A, q)| ≦ d(p, q) < ϵ (1.97)

for any q ∈ Bδ(p). By the condition 4 in Theorem 1.2.5, d(A, ) is continuous
at p ∈ X. ■

Remark 8 (Lipschitz Continuous). Given two metric spaces X and R, (1.96)
implies d(A, ) is Lipschitz continuous with Lipschitz constant is equal to 1.
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1.3.2 Uniform Continuity and Uniform Limit Theorem

Definition 1.3.2 (Uniformly Continuous Maps). A map f : X → Y between
metric spaces is called uniformly continuous iff for each ϵ > 0, there exists δ > 0
such that

dY (fp, fq) < ϵ (1.98)

for each p, q ∈ X such that dX(p, q) < δ.

Theorem 1.3.4 (Heine-Cantor Theorem). A continuous map between two met-
ric spaces is uniformly continuous if the domain space is compact.

Proof. Let (X, dX) and (Y, dY ) be metric spaces, and f ∈ C0(X,Y ). Suppose
(X, dX) is compact. Let ϵ > 0. For each x ∈ X, since f is continuous, there
exists δx > 0 such that

f (Bδx(x)) ⊂ Bϵ/2(fx) (1.99)

see the condition 4 in Theorem 1.2.5. Since
{
Bδx/2(x) | x ∈ X

}
is an open

covering of the given compact space X, there exists a finite subcover:

X = Bδx1/2
(x1) ∪ · · · ∪Bδxk

/2(xk). (1.100)

Define δ0 > 0:

δ0 := min

{
δx1

2
, . . . ,

δxk

2

}
. (1.101)

Let p ∈ X; there is some l ∈ {1, . . . , k} such that p ∈ Bδxl
/2(xl). For each

q ∈ Bδ0(p), namely dX(p, q) < δ0:

dX (q, xl) ≦ dX (q, p) + dX (p, xl) < δ0 +
δxl

2
≦ δxl

. (1.102)

That is, both p and q are in Bδxl
(xl). Then, the images fp and fq are in

Bϵ/2(fxl), hence

dY (fp, fq) ≦ dY (fp, fxl) + dY (fxl, fq) <
ϵ

2
+

ϵ

2
. (1.103)

Since p is arbitrary for the preassigned ϵ > 0, we conclude that f is uniformly
continuous. ■

Definition 1.3.3 (Uniform Convergence). Let X be a set, (Y, d) be a metric
space,

{fn : X → Y | n ∈ N} (1.104)

be a N-index set of maps. As a sequence, {fn | n ∈ N} converges uniformly to
a limit f∞ iff for each ϵ > 0, there exists N ∈ N such that for every n ∈ N,

n ≧ N ⇒ ∀x ∈ X : d (fn(x), f∞(x)) < ϵ. (1.105)
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Theorem 1.3.5 (Uniform Limit Theorem). Let X be a topological space, (Y, d)
be a metric space,

{fn : X → Y | n ∈ N} (1.106)

be a sequence of maps converging uniformly to f∞ : X → Y . If {fn : X → Y | n ∈ N}
is a sequence of continuous maps, then the limit f∞ is continuous.

Proof. Let x ∈ X. For a given sequence
{
fn ∈ C0(X,Y ) | n ∈ N

}
, we will show

that the limit is continuous at x. Let ϵ > 0 be arbitrary.
Since fn 99K f∞ uniformly as n 99K ∞, for any t ∈ X, there is some Nt ∈ N

such that
n ≧ Nt ⇒ d (fnt, f∞t) <

ϵ

3
. (1.107)

For n ≧ Nx, since fn ∈ C0(X,Y ), there is some neighborhood U ∈ Nx such
that

∀y ∈ U : |fnx− fny| <
ϵ

3
. (1.108)

Let y ∈ U . If n ≧ max {Nx, Ny},

d (f∞x, f∞y) ≦ d (f∞x, fnx) + d (fnx, fny) + d (fny, f∞y) < ϵ. (1.109)

Hence as y 99K x relative to the topology on X, f∞y 99K f∞x. ■

Theorem 1.3.6 (Special Case of Tietze-Urysohn Theorem). Let (X, d) be a
metric space, F0, F1 ⊂ X be non-empty closed subspaces. If F0 and F1 are
disjoint, then there exists a continuous map f ∈ C0 (S, [0, 1]) such that f |F0

= 0
and f |F1

= 1.

Proof. Since F0 ∩ F1 = ∅,

g := d(F0, ) + d(F1, ) (1.110)

is continuous and positive definite. Define

fp :=
d(F0, p)

g(p)
=

d(F0, p)

d(F0, p) + d(F1, p)
(1.111)

We will show that f is continuous. For p, q ∈ X,

fq − fp =
(d(F0, p) + d(F1, p)) d(F0, q)− d(F0, p) (d(F0, q) + d(F1, q))

g(p)g(q)

=
d(F1, p) (d(F0, q)− d(F0, p)) + d(F0, p) (d(F1, p)− d(F1, q))

g(p)g(q)
(1.112)

By Theorem 1.3.3, we conclude that as q 99K p, fq 99K fp. ■

Corollary 1.3.6.1. With a scaling and a shift, we obtain f̃ ∈ C0(S, [a, b]):

f̃x := (b− a)fx+ a (1.113)

for a < b.
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Lemma 1.3.4 (Special Case of Tietze’s Extension Theorem). Let (X, d) be a
metric space, F ⊂ X be a closed subspace, and g ∈ C0 (F, [−1, 1]). There exists
a continuous extension of g, that is, an f ∈ C0 (X, [−1, 1]) exists such that
f |F = g.

Proof. For closed intervals
[
−1,− 1

3

]
and

[
+ 1

3 , 1
]
, their preimages:

F0− := g←
[
−1,−1

3

]
, F0+ := g←

[
1

3
, 1

]
(1.114)

are closed in X, see the condition 3 Theorem 1.2.5. Moreover, they are disjoint.
Applying Theorem 1.3.6, there exists

f0 ∈ C0

(
X,

[
−1

3
,
1

3

])
(1.115)

such that f0|F0−
= − 1

3 and f0|F0+
= + 1

3 . By definition,

∀x ∈ X : |f0x| ≦
1

3
. (1.116)

Since

F = g←
[
−1,−1

3

]
︸ ︷︷ ︸

F0−

∪g←
[
−1

3
,
1

3

]
∪ g←

[
1

3
, 1

]
︸ ︷︷ ︸

F0+

(1.117)

we conclude |gx− f0x| ≦ 2
3 for each x ∈ F :

• x ∈ F0− case

Since −1 ≦ gx ≦ − 1
3 and f0x = − 1

3 ,

−2

3
≦ gx− f0x ≦ 0. (1.118)

• x ∈ g←
[
− 1

3 ,
1
3

]
case

Since both − 1
3 ≦ gx, f0x ≦ + 1

3 ,

−2

3
≦ gx− f0x ≦

2

3
. (1.119)

• x ∈ F0+ case

Since 1
3 ≦ gx ≦ 1 and f0x = + 1

3 ,

0 ≦ gx− f0x ≦
2

3
. (1.120)
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Define g1 := g − f0. As shown above g1 ∈ C0
(
F,
[
− 2

3 ,
2
3

])
. For

F = g1
←
[
−2

3
,−2

3

1

3

]
∪ g1

←
[
−2

3

1

3
,
2

3

1

3

]
∪ g1

←
[
2

3

1

3
,
2

3

]
(1.121)

by Theorem 1.3.6, there exists f1 ∈ C0
(
X,
[
− 2

3 ,
2
3

])
with

∀x ∈ F : |g1x− f1x| =

∣∣∣∣∣∣gx−
1∑

j=0

fjx

∣∣∣∣∣∣ ≦
(
2

3

)2

(1.122)

We can continue this process so that for each n ∈ N,

fn ∈ C0

(
X,

[
−
(
2

3

)n
1

3
,

(
2

3

)n
1

3

])
(1.123)

such that

∀x ∈ F :

∣∣∣∣∣∣gx−
n∑

j=0

fjx

∣∣∣∣∣∣ ≦
(
2

3

)n

(1.124)

Since {fn | n ∈ N} is a sequence of bounded maps such that∥∥∥∥∥∥
n∑

j=0

fj

∥∥∥∥∥∥ ≦
n∑

j=0

∥fj∥ ≦
n∑

j=0

(
2

3

)n
1

3
< 1, (1.125)

the limit limn→∞
∑n

j=0 =
∑

n∈N fn exists, where ∥f∥ := supx∈X |fx|. More-
over, it is a uniform limit of continuous functions on X,∑

n∈N
fn ∈ C0 (X, [−1, 1]) . (1.126)

By (1.124),
∑n

j=0 fj 99K g as n 99K ∞ on F :

∑
n∈N

fn

∣∣∣∣∣
F

= g. (1.127)

Hence,
∑

n∈∞ fn is the desired continuous extension of g on X. ■
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Chapter 2

Complex Analysis 101

We assume some working knowledge of real numbers, particularly the existence
of lease upper bound: if a subspace A ⊂ R of real numbers is non-empty and
bounded above, then it has a least upper bound. Such an upper bound, if it
exists, is unique.

2.1 Intervals and Curves

2.1.1 Real Intervals and Heine-Borel Theorem

Definition 2.1.1 (Real Intervals). For a, b ∈ R, let

[a, b] := {(1− t)a+ tb | t ∈ [0, 1]} . (2.1)

We call [a, b] a real closed interval.

Theorem 2.1.1. A real closed interval [a, b] ⊂ R is connected.

Proof. Let F ⊂ [a, b] be a closed proper subspace:

∅ ⊊ F ⊊ [a, b]. (2.2)

We will show that F is not open.
Let x ∈ F and y ∈ ¬F . Without loss of generality, consider x < y case.

Define F<y := {t ∈ F | t < y}; as x ∈ F<y and F<y is bounded above, we may
set:

z := supF<y. (2.3)

Then x ≦ z ≦ y, since y is an upper bound of F<y and z is the least upper
bound.

For any ϵ > 0, Bϵ(z) ∩ F ̸= ∅, i.e., z ∈ F , where Bϵ(x) := (x − ϵ, x + ϵ).
Otherwise, any number in (z − ϵ, z) would be an upper bound of F<y, which
contradicts the very definition of z.
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Recalling F ⊂ [a, b] is closed, we conclude z ∈ F . Therefore, z < y. Since the
open interval (z, y) does not meet F , (z, y)∩F = ∅, for each ϵ > 0, Bϵ(z) ̸⊂ F . In
other words, F is not a neighborhood of z; hence, F can not be an open subspace
of [a, b]. It follows that no clopen proper subspace in [a, b]. By Theorem 1.2.8,
[a, b] ⊂ R is connected. ■

Theorem 2.1.2. A real closed interval [a, b] ⊂ R is compact.

Proof. Let O be an open cover of [a, b]. Define

S := {x ∈ [a, b] | [a, x] is finitely covered by O} (2.4)

• S is not empty

Since a ∈ [a, b] is covered by at least one U ∈ O, [a, a] = {a} ⊂ U . Hence,
a ∈ S.

• S ⊂ [a, b] is open

Let x ∈ S and {V1, . . . , Vn} ⊂ O be the finite subcover of [a, x]. Since
x ∈ [a, b] is covered by some open V ∈ O, there exists a positive ϵ > 0
such that:

Bϵ(x) ⊂ V. (2.5)

We will show that Bϵ(x) ⊂ S. Let y ∈ Bϵ(x). Since y ∈ V , we have a
finite subcover {V1, . . . , Vn, V } of [a, y]. Hence, y ∈ S. By Lemma 1.2.2,
S ⊂ [a, b] is open.

• S ⊂ [a, b] is closed

Let x ∈ S, where the closure S is relative to the topology of [a, b]. Since
S ⊂ [a, b], x is in some open W ∈ O:

x ∈ W. (2.6)

Hence, there is a positive ϵ > 0 with Bϵ(x) ⊂ W . Since x ∈ S:

Bϵ(x) ∩ S ̸= ∅. (2.7)

There exists, thus, some y ∈ Bϵ(x) ∩ S such that [a, y] is finitely covered:

[a, y] ⊂ W1 ∪ · · ·Wk. (2.8)

Then [a, x] is covered by {W1, . . . ,Wk,W}, since the interval between x
and y is covered by W and x ∈ W . Therefore, we conclude x ∈ S. With
the trivial inclusion S ⊂ S, we conclude S = S by Theorem 1.2.1.

As shown, S ⊂ [a, b] is non-empty and clopen. Since [a, b] ⊂ R is connected
by Theorem 2.1.1, we conclude S = [a, b]. Hence, [a, b] is compact. ■

Theorem 2.1.3 (Heine-Borel Theorem). Let n be a positive integer. A subspace
K ⊂ Rn is compact iff it is bounded and closed.
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Proof. (⇒) Since Rn is furnished with the standard metric d, as shown in The-
orem 1.3.2, Rn is a Hausdorff space. Thus, if K ⊂ Rn is compact, it is closed by
Theorem 1.2.16. Consider {B1(x) | x ∈ K} of the set of unit open balls. Since
it is an open cover of the compact subspace K ⊂ Rn, there is a finite subcover:

K ⊂ B1 (x1) ∪ · · · ∪B1 (xn) . (2.9)

Define M := max {|x1| , · · · , |xn|}. For each x ∈ K, there is some xp with
x ∈ B1 (xp):

|x| = d(0, x) ≦ d (0, xp) + d (xp, x) < M + 1. (2.10)

Hence, K ⊂ BM+1(0) i.e., K is bounded.
Conversely, suppose K ⊂ Rn is bounded and closed. Since K is bounded,

there is µ > 0 with
K ⊂ [−µ, µ]

n
. (2.11)

As shown in Theorem 2.1.2, [−µ, µ] ⊂ R is compact; by Theorem 1.2.19, the
product [−µ, µ]

n
is a compact subspace in Rn. By Lemma 1.2.1, since K ⊂

[−µ, µ]
n
is closed. By Theorem 1.2.15, the closed subspace K ⊂ [−µ, µ]

n
of a

compact subspace [−µ, µ]
n ⊂ Rn is a compact subspace in Rn. ■

Theorem 2.1.4 (Extreme Value Theorem). A real valued continuous map f on
a compact space K is bounded, and there are p, q ∈ K such that fp = supx∈K fx
and fq = infx∈K fx.

Proof. Let f ∈ C0(K,R) be a continuous map on a compact spaceK. The image
fK ⊂ R is compact by Theorem 1.2.14; by Theorem 2.1.3, fK is bounded in
R. Let M := supx∈K fx. Suppose, for contradiction, that there is no point x
on K so that fx = M , namely for each x ∈ K, fx < M . Then x 7→ 1

M−fx > 0

is continuous on K, hence 1
M−f is bounded. Let ϵ > 0 be arbitrary. There

must be some xϵ ∈ K with M − ϵ < fxϵ ≦ M , otherwise M − ϵ would be an
upper bound of fK. Hence, 1

M−fxϵ
> 1

ϵ , which means 1
M−f is not bounded, a

contradiction. ■

Corollary 2.1.4.1. For a subspace A ⊂ C, define

δA := sup {|a− b| | a, b ∈ A} (2.12)

If A is compact, there are x, y ∈ A with δA = |x− y| < ∞.

Proof. Let
f : C× C → R; (x, y) 7→ |x− y| (2.13)

be the standard metric on C. By Lemma 1.3.3, f is continuous. If A ⊂ C is
compact, the product A×A is also compact by Theorem 1.2.19. Hence, f |A×A is
bounded. Applying Theorem 2.1.4, f has maximum, namely there are x, y ∈ A
with δA = f(x, y) = |x− y|. ■
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2.1.2 Curves in C
Definition 2.1.2 (Curves and Complex Intervals). Let X be a topological
space. A curve in X is a continuous map from some closed interval, namely
γ ∈ C0 ([a, b], X). We call γ(a) the initial point of γ, and γ(b) the final point of
γ. A closed curve is a curve γ ∈ C0 ([a, b], X) with γ(a) = γ(b). Let [γ] := γ[a, b]
be the image in X of a curve γ ∈ C0 ([a, b], X). In other words, a closed curve is
a curve with no endpoints. For a pair of complex numbers z, w ∈ C, we denote
[w, z] := {(1− t)w + tz | t ∈ [0, 1]}.

Theorem 2.1.5. The image of a curve in C is compact.

Proof. Let γ ∈ C0 ([a, b],C) be a curve. By Theorem 1.2.14 and Theorem 2.1.2,
the continuous image [γ] is compact.. ■

Theorem 2.1.6. Let r > 0 and x ∈ C. Both Br(x) ⊂ C and its complement
¬Br(x) = C−Br(x) are connected.

Proof. Consider y ∈ Br(x) and [x, y] = {(1− t)x+ ty | y ∈ [0, 1]}. Let p =
(1− t)x+ ty ∈ [x, y]. Then p ∈ Br(x) since

|p− x| = |−tx+ ty| = |t| |x− y| ≦ |x− y| < r. (2.14)

It follows [x, y] ⊂ Br(x). Hence,

Br(x) =
⋃

y∈Br(x)

[x, y] (2.15)

and each complex interval shares the center x in common. By Theorem 1.2.11,
we conclude Br(x) is connected.

The complement ¬Br(x) is given by:

{z ∈ C | |z − x| ≧ r} = C ∪
⋃

θ∈[0,2π]

Jθ,=
⋃

θ∈[0,2π]

C ∪ Jθ, (2.16)

where C := ∂Br(x) = {z ∈ C | |z − x| = r} and Jθ :=
{
x+ t exp

√
−1θ | t ≧ r

}
.

Now, C is the image of a continuous map γ0 ∈ C0 ([0, 2π],C):

γ0θ = exp
√
−1θ. (2.17)

Hence, C = [γ] is connected since it is the continuous image of the connected
interval [0, 1] ⊂ R; see Theorem 1.2.9 and Theorem 2.1.1. Similarly, Jθ is also
connected for each θ ∈ [0, 1] with C ∩ Jθ =

{
r exp

√
−1θ

}
. By Theorem 1.2.11,

C ∪Jθ is connected for each θ ∈ [0, 2π]. Therefore, we conclude
⋃

θ∈[0,2π] C ∪Jθ
is connected. ■

Definition 2.1.3 (Path-Connectedness). A topological space is called path-
connected iff each pair of points can be joined by a curve.

Lemma 2.1.1. Each path-connected space is connected.
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Proof. Let X be a path-connected non-empty space and x ∈ X. For each y ∈ X,
there exists γy ∈ C0 ([0, 1], X) such that γy0 = x and γy1 = y. Since each γy is
connected by Theorem 1.2.9, sharing the initial point γy0 = x,

X =
⋃
y∈X

[γy] (2.18)

is connected by Theorem 1.2.11. ■

Theorem 2.1.7. Let X be a topological space. TFAE:

1. Each path-component is open.

2. Each point of X has a path-connected open neighborhood.

Proof. (1 ⇒ 2) Each point belongs to some path-component. By 1, such a
path-component is open, and therefore, it is an open neighborhood of its points.

(2 ⇒ 1) Let K be a path-component of X, and x ∈ K. By 2, there is an
open and path-connected U ⊂ Y with x ∈ U ⊂ Y . By the ⊂-largest property
of K, K ⊂ K ∪ U implies U ⊂ K. By Lemma 1.2.2, K is open. ■

Remark 9. Let K be a path-component of X. Since ¬K = X − K is given
by the union of other open path-components, ¬K ⊂ X is open. Namely, a
path-component of X is clopen.

Theorem 2.1.8. A topological space is path-connected iff it is connected and
each point has a path-connected open neighborhood.

Proof. (⇒) Let X be a path-connected space. As shown in Lemma 2.1.1, X
is connected, and hence X is clopen. Then, X itself is a path-connected open
neighborhood of its points.

(⇐) Let X be a connected topological space in which each point has a path-
connected open neighborhood. Each path-component is open and, hence, closed
in X. Since X is connected, such a clopen subspace must be X itself. ■

Corollary 2.1.8.1. An open subspace in Rn, in particular in C, is connected
iff it is path-connected.

Proof. Let U ⊂ C be an open subspace. Each point x ∈ U has ϵ > 0 with
Bϵ(x) ⊂ U . Recall Bϵ(x) is path-connected, see the proof in Theorem 2.1.6,
via Theorem 2.1.8, the connectedness of U ⊂ C is equivalent to the path-
connectedness of U . ■

2.2 Winding Numbers

The winding number of a closed curve is the number of times the curve winds
around a given point on the complex plane C.
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Definition 2.2.1 (Argument). For any z ∈ C − R≦0, there are unique θ ∈
(−π, π) and r > 0 such that z = r exp

(√
−1θ

)
. We call θ the argument of

z = r exp
(√

−1θ
)
:

arg :
(
C− R≦0

)
→ (−π, π); r exp

(√
−1θ

)
7→ θ. (2.19)

Theorem 2.2.1. A curve in C is uniformly continuous.

Proof. Let γ ∈ C0([a, b],C) be a curve. As shown in Theorem 2.1.2, the domain
[a, b] ⊂ R is compact. By Theorem 1.3.4, it follows. ■

Definition 2.2.2 (Winding Numbers of Closed Curves). Let γ ∈ C0([a, b],R)
be a closed curve and z0 ∈ ¬[γ]. We will define the winding number n(γ, z0) of
the curve γ at z0.

Since [γ] ⊂ C is closed, Theorem 1.3.1 implies

δ0 := d ([γ], z0) > 0 (2.20)

Let ϵ > 0 such that
0 < ϵ < δ0. (2.21)

Since γ is uniformly continuous by Theorem 1.3.4, there exists δ > 0 such that,
for each s, t ∈ [a, b],

|s− t| < δ ⇒ |γs− γt| < ϵ. (2.22)

Consider a finite subdivision of [a, b]:

a = a0 < a1 < · · · < an−1 < an = b (2.23)

such that max {a1 − a0, · · · , an − an−1} < δ. Then, for each pair (aj−1, aj) , j ∈
{1, · · · , n}:

|γaj − γaj−1| < ϵ. (2.24)

Moreover, for each j ∈ {1, · · · , n},

wj :=
γaj − z0

γaj−1 − z0
(2.25)

satisfies |wj − 1| < 1, hence ℜwj > 0:

|wj − 1| =
∣∣∣∣γaj − z0 − (γaj−1 − z0)

γaj−1 − z0

∣∣∣∣ = ∣∣∣∣γaj − γaj−1
γaj−1 − z0

∣∣∣∣ < ϵ

δ0
< 1. (2.26)

ℜ

ℑ

+1
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Thus, for each j ∈ {1, · · · , n},

argwj ∈
(
−π

2
,
π

2

)
. (2.27)

Since γ is closed, γa0 = γa = γb = γan:

n∏
j=1

wj =

n∏
j=1

γaj − z0
γaj−1 − z0

=
γan − z0
γa0 − z0

= 1, (2.28)

we conclude
∑n

j=1 argwj ≡ 0 mod 2π. We define:

n (γ, z0) :=
1

2π

n∑
j=1

argwj . (2.29)

Remark 10. As a trivial example, if a curve is a constant, its winding number
is zero.

Lemma 2.2.1. The winding number is independent of the subdivision.

Proof. We will show that the winding number based on a new subdivision:

a0 < · · · < aj−1 < τ < aj < · · · < an (2.30)

is equal to the original n (γ, z0) via the subdivision in (2.23), using the same
notation in Definition 2.2.2.

Let θj := argwj . Since

θj = arg
γaj − z0

γaj−1 − z0
= arg

γaj − z0
γτ − z0

γτ − z0
γaj−1 − z0

(2.31)

if we define θ′j := arg
γaj−z0
γτ−z0 and θ′′j := arg γτ−z0

γaj−1−z0 , we have

θj ≡ θ′j + θ′′j mod 2π. (2.32)

Since each argument is in
(
−π

2 ,
π
2

)
:

∣∣θj − (θ′j + θ′′j
)∣∣ ≦ |θj |+

∣∣θ′j∣∣+ ∣∣θ′′j ∣∣ < 3

2
π, (2.33)

we conclude θj = θ′j + θ′′j . This means the winding number based on a finer
subdivision remains the same. ■

Theorem 2.2.2. Let γ be a closed curve in C. Then

n(γ, ) : ¬[γ] → Z (2.34)

is constant on each connected component in ¬[γ]. In particular, n(γ, ) is zero
on an unbounded connected component.
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Proof. Let γ ∈ C0([a, b],R) be a closed curve, t ∈ [a, b], and z0, z
′
0 ∈ ¬[γ]. We

use the same 0 < ϵ < δ0 := d ([γ], z0) and subdivision a = a0 < · · · < an = b for
z0. Since

|γt− z0| ≦ |γt− z′0|+ |z0 − z′0| . (2.35)

we obtain:
|γt− z′0| ≧ |γt− z0| − |z0 − z′0| = δ0 − |z0 − z′0| (2.36)

If z0 and z′0 are relatively close, namely, if |z0 − z′0| < δ0 − ϵ,

|γt− z′0| > ϵ. (2.37)

Then, for each s ∈ [a, b], |γs− z′0| > ϵ > 0, and

d ([γ], z′0) ≧ ϵ > 0. (2.38)

Hence, for n(γ, z′0), we may use the same subdivision as n(γ, z0):∣∣w′j − 1
∣∣ = ∣∣∣∣γaj − γaj−1

γaj−1 − z′0

∣∣∣∣ < ϵ

ϵ
= 1 (2.39)

where

w′j :=
γaj − z′0

γaj−1 − z′0
, (2.40)

for each j ∈ {1, · · · , n}.
We will first show n(γ, ) is continuous. Let j ∈ {1, · · · , n}. Define:

vj :=
γaj − z0
γaj − z′0

. (2.41)

Since

|vj − 1| =
∣∣∣∣ z′0 − z0
γaj−1 − z′0

∣∣∣∣ < |z′0 − z0|
ϵ

(2.42)

if z′0 is sufficiently close to z0, namely if

|z0 − z′0| < min {ϵ, δ0 − ϵ} (2.43)

then we obtain |vj − 1| < 1. Hence

arg vj ∈
(
−π

2
,
π

2

)
. (2.44)

Since

θ′j := arg
γaj − z′0

γaj−1 − z′0
= arg

γaj − z′0
γaj − z0

γaj − z0
γaj−1 − z0

γaj−1 − z0
γaj−1 − z′0

. (2.45)

we obtain:
θ′j ≡ θj − arg vj + arg vj−1 mod 2π. (2.46)
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Recalling each angle is in
(
−π

2 ,
π
2

)
, we conclude

θ′j = θj − arg vj + arg vj−1. (2.47)

Recalling γa0 = γan, we have v0 = vn. Moreover:

n∑
j=1

θ′j =

n∑
j=1

θj . (2.48)

Thus, n(γ, ) is locally constant, and hence n(γ, ) is continuous relative to the
discrete topology:

n(γ, ) ∈ C0 (¬[γ],Z) . (2.49)

Let Ω ⊂ ¬[γ] be a connected component and z0 ∈ Ω. Define

Ω0 := {z ∈ Ω | n(γ, z) = n(γ, z0)} = Ω ∩ n(γ, )←n(γ, z0). (2.50)

Since the singleton set {n(γ, z0)} ⊂ Z is open, its preimage Ω0 ⊂ Ω is open.
Moreover, its complement is also open:

Ω1 := {z ∈ Ω | n(γ, z) ̸= n(γ, z0)} = Ω ∩
⋃

k ̸=n(γ,z0)

n(γ, )←k (2.51)

By definition, Ω0 ∪ Ω1 = Ω, and these two open subspaces are disjoint:

Ω0 ∩ Ω1 = ∅. (2.52)

Since Ω is connected and z0 ∈ Ω ∩ Ω0, by Theorem 1.2.8, we conclude Ω0 = Ω.
Hence, n(γ, ) is constant on each connected component.

Finally, we will show that n(γ, ) is zero on an unbounded connected compo-
nent. Since C is Hausdorff, and as shown in Theorem 2.1.5 [γ] ⊂ C is compact,
by Theorem 1.2.16, [γ] ⊂ C is closed. There exists R > 0 with [γ] ⊂ BR(0) =
{w ∈ C | |w| ≦ R}. The complement ¬BR(0) = {w ∈ C | |w| > R} is connected,
as shown in Theorem 2.1.6. Let Ω∞ be an unbounded component of ¬[γ]:

¬BR(0) ⊂ Ω∞. (2.53)

Consider z0 ∈ Ω∞ such that |z0| > 3R. Let s, t ∈ [a, b]:

|γt− z0| ≧ |z0| − |γt| > 3R−R = 2R

|γs− γt| ≦ |γs|+ |γt| ≦ 2R
(2.54)

Then, we obtain: ∣∣∣∣γs− γt

γt− z0

∣∣∣∣ < 1. (2.55)

Since s, t ∈ [a, b] are arbitrary, we may use the trivial subdivision a < b:

arg
γb− z0
γa− z0

= arg 1 = 0. (2.56)

Hence, n(γ, )|Ω∞
= 0. ■
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Theorem 2.2.3. Let γ0, γ1 be closed curves in C, for simplicity, γ0, γ1 ∈
C0 ([0, 1],C) with γ00 = γ01 and γ10 = γ11. Suppose γ00 = γ10, and there
exists h ∈ C0 ([0, 1]× [0, 1],C) such that

h(0, ) = γ0, h(1, ) = γ1, h( , 0) = γ00 = h( , 1). (2.57)

Then, n(γ0, z0) = n(γ1, z0) for z0 ∈ ¬[h].

Proof. Note that for each s ∈ [0, 1], h(s, 0) = h(s, 1), that is h(s, ) ∈ C0([0, 1],C)
is a closed curve.

Let z0 ∈ ¬[h]. By Theorem 1.2.14, since h is compact and its domain
[0, 1]× [0, 1] ⊂ R2 is compact in C. Since the underlying C is a Hausdorff space,
by Theorem 1.2.16, [h] ⊂ C is closed. Hence,

δ0 := d([h], z0) > 0 (2.58)

by Theorem 1.3.1. Let ϵ > 0 such that 0 < ϵ < δ0. Since h is continuous on a
compact space [0, 1]× [0, 1] ⊂ R2, by Theorem 1.3.4, h is uniformly continuous.
Therefore, there exists δ > 0 such that, for each s, s′, t, t′ ∈ [0, 1]:

|s− s′| , |t− t′| < δ ⇒ |h(s, t)− h(s′, t′)| < ϵ. (2.59)

Consider subdivisions 0 = s0 < · · · < sm = 1 and 0 = t0 < · · · < tn = 1 such
that

max {s1 − s0, · · · , sm − sm−1, t1 − t0, · · · , tn − tn−1} < δ. (2.60)

Let j ∈ {0, · · · ,m}. The condition (2.60) guarantees:

2πn (h(sj , ), z0) =

n∑
k=1

arg
h(sj , tk)− z0

h(sj , tk−1)− z0
(2.61)

is well-defined; see the construction in Definition 1.2.16. Moreover, for any
t ∈ [0, 1]: ∣∣∣∣ h(sj , t)− z0

h(sj−1, t)− z0
− 1

∣∣∣∣ = ∣∣∣∣h(sj , t)− h(sj−1, t)

h(sj−1, t)− z0

∣∣∣∣ < ϵ

δ0
< 1 (2.62)

holds, where we set s−1 = sm−1, and hence,
∣∣∣arg h(sj ,t)−z0

h(sj−1,t)−z0

∣∣∣ < π
2 .

Since

h(sj , tk)− z0
h(sj , tk−1)− z0

h(sj−1, tk−1)− z0
h(sj−1, tk)− z0

=
h(sj , tk)− z0

h(sj−1, tk)− z0

h(sj−1, tk−1)− z0
h(sj , tk−1)− z0

,

(2.63)
we obtain:

arg
h(sj , tk)− z0

h(sj , tk−1)− z0
− arg

h(sj−1, tk)− z0
h(sj−1, tk−1)− z0

≡ arg
h(sj , tk)− z0

h(sj−1, tk)− z0
− arg

h(sj , tk−1)− z0
h(sj−1, tk−1)− z0

mod 2π.

(2.64)
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Since each argument is in
(
−π

2 ,
π
2

)
, we conclude:

arg
h(sj , tk)− z0

h(sj , tk−1)− z0
− arg

h(sj−1, tk)− z0
h(sj−1, tk−1)− z0

= arg
h(sj , tk)− z0

h(sj−1, tk)− z0
− arg

h(sj , tk−1)− z0
h(sj−1, tk−1)− z0

.

(2.65)

Hence, n (h(sj , ), z0) = n (h(sj−1, ), z0):

2πn (h(sj , ), z0)− 2πn (h(sj−1, ), z0)

=

n∑
k=1

arg
h(sj , tk)− z0

h(sj , tk−1)− z0
−

n∑
k=1

arg
h(sj−1, tk)− z0

h(sj−1, tk−1)− z0

=

n∑
k=1

arg
h(sj , tk)− z0

h(sj−1, tk)− z0
−

n∑
k=1

arg
h(sj , tk−1)− z0

h(sj−1, tk−1)− z0

= arg
h(sj , tn)− z0

h(sj−1, tn)− z0
− arg

h(sj , t0)− z0
h(sj−1, t0)− z0

= 0.

(2.66)

Since j is arbitrary, we conclude n (h(s0, ), z0) = · · · = n (h(sm, ), z0). ■

Remark 11. The continuous map h is called a homotopy of γ0 to γ1. The
homotopy h represents, intuitively speaking, a continuous deformation of γ0
into γ1. This theorem shows that the winding number is homotopy invariant.

2.3 Boundary-Preserving Maps on Unit Disc

Consider D = B1(0) = {z ∈ C | |z| ≦ 1}, its boundary:

∂D = {z ∈ C | |z| = 1} (2.67)

and the corresponding closed curve γ0 ∈ C0 (I, ∂D):

γ0t := exp
(
2π

√
−1t

)
, (2.68)

where I := [0, 1].

Theorem 2.3.1. Let f ∈ C0
(
D,D

)
such that f∂D ⊂ ∂D. If n (fγ0, )|D ̸= 0,

then D ⊂ fD.

Proof. Suppose n (fγ0, )|D ̸= 0 but, for contradiction, D ̸⊂ fD. Then, we may
select z0 in D− fD, and n (fγ0, z0) ̸= 0. If we define γ1 = 1 of a constant curve
and

h(s, t) := (1− s)γ0t+ s, (2.69)

we obtain h ∈ C0 ([0, 1]× [0, 1],C) such that

h(0, ) = γ0, h(1, ) = γ1, h( , 0) = 1 = h( , 1). (2.70)
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Since f∂D ⊂ ∂D and z0 ∈ D − fD ⊂ D = D − ∂D ⊂ D − f∂D,

z0 ̸∈ f∂D. (2.71)

Hence, z0 ̸∈ fD ∪ f∂D, i.e.,
z0 ̸∈ fD. (2.72)

Recalling [h] = D, we conclude z0 ̸∈ [fγ0]. Applying Theorem 2.2.3, n (fγ0, z0) =
n (fγ1, z0) = 0, which is absurd. ■

Theorem 2.3.2. Let R = R(a, b; c, d) := {z ∈ C | a ≦ ℑz ≦ b ∧ c ≦ ℑz ≦ d}
be a closed rectangle, γ1, γ2 ∈ C0 (I,R) be curves in R such that ℜ (γ10) =
a,ℜ (γ11) = b,ℑ (γ20) = c,ℑ (γ21) = d, where I := [0, 1]. Then there exist
s, t ∈ I such that γ1s = γ2t. In other words, a curve connecting the left and
right edges meets another curve connecting the top and bottom edges.

γ10

γ11

γ20

γ21

Proof. Suppose, for contradiction, that such a pair of curves never meet, i.e.,
γ1s ̸= γ2t for any s, t ∈ [0, 1]. Then, we can define

f(s, t) :=
γ2t− γ1s

|γ2t− γ1s|
. (2.73)

Moreover, f ∈ C0
(
I2, D

)
and, since |f(s, t)| = 1 for each (s, t) ∈ I2:

[f ] ⊂ ∂D. (2.74)

Since fD ⊂ [f ] is in ∂D = D −D, we have D ̸⊂ fD. Consider a closed path L
in I2:

s

t

• [(0, 0), (0, 1)]

Relative to γ10, the argument of γ2 −γ10: I → Cmoves from arg (γ20− γ10) ∈[
−π

2 , 0
]
to arg (γ21− γ10) ∈

[
0, π

2

]
, where

arg :
(
C− R≦0

)
→ (−π, π) (2.75)
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see Definition 2.2.1.

• [(0, 1), (1, 1)]

The argument of γ21− γ1 : I → C moves from arg (γ21− γ10) ∈
[
0, π

2

]
to

arg (γ21− γ11) ∈
[
π
2 , π

]
, where

arg :
(
C−

√
−1R≦0

)
→
(
−π

2
,
3

2
π

)
(2.76)

with
√
−1R≦0 :=

{√
−1t | t ≦ 0

}
so that the argument single-valued and

continuous in the corresponding domain.

• [(1, 1), (1, 0)]

The argument of γ2 − γ11: I → C moves from arg (γ21− γ11) ∈
[
π
2 , π

]
to arg (γ21− γ10) ∈

[
π, 3

2π
]
, where

arg :
(
C− R≧0

)
→ (0, 2π). (2.77)

• [(1, 0), (0, 0)]

The argument of γ20 − γ1 : I → C moves from arg (γ21− γ10) ∈
[
π, 3π

2

]
to arg (γ20− γ10) ∈

[
3π
2 , 2π

]
, where, with

√
−1R≧0 :=

{√
−1t | t ≧ 0

}
,

arg :
(
C−

√
−1R≧0

)
→
(
π

2
,
5

2
π

)
. (2.78)

Let γL : [0, 4] → L be a curve along with L ⊂ I2:

γLu :=


(0, u) u ∈ [0, 1]

(u− 1, 1) u ∈ [1, 2]

(1, 3− u) u ∈ [2, 3]

(4− u, 0) u ∈ [3, 4]

(2.79)

ℜ

ℑ

f(1, 1)

f(0, 0)

f(1, 0)

f(0, 1)

Then f circles around the origin once, namely n (fγL, 0) = 1; by Theorem 2.3.1,
it follows D ⊂ fD, which is absurd. ■
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2.4 Jordan Curve Theorem

We will closely follow [Yan] to show Jordan curve theorem.

Lemma 2.4.1. Let F ⊂ C be a closed subspace and V ⊂ C− F be a connected
component. Then ∂V ⊂ F .

Proof. We will first show that a connected component V ⊂ C−F is open in C.
Let x ∈ V ; since x ∈ C − F and C − F ⊂ C is open, there exists ϵ > 0 with
Bϵ(x) ⊂ C− F . As shown in Theorem 2.1.6, the open ball Bϵ(x) is connected,
and V is a connected component with V ∩Bϵ(x) ̸= ∅. Since V ⊂ V ∪Bϵ(x), the
⊂-largest property, see Definition 1.2.9, implies Bϵ(x) ⊂ V . By Lemma 1.2.2,
V ⊂ C is open.

Let W ⊂ C− F be another connected component; as shown above, W ⊂ C
is open. By Theorem 1.2.13, W ∩V = ∅. We will show ∂V ∩W = ∅. Let x ∈ W ;
since W ⊂ C is open, there is ϵ > 0 with Bϵ(x) ⊂ W . If x were also in ∂V , by
Lemma 1.2.3, Bϵ(x) ∩ V ̸= ∅ but Bϵ(x) ∩ V ⊂ W ∩ V = ∅, which is absurd.

Since V ⊂ C is open, we obtain:

∂V = V − V. (2.80)

Hence, ∂V ∩ V = ∅. Moreover, for each connected component W of C − F ,
∂V ∩W = ∅:

∅ = ∂V ∩
⋃

{W | W ⊂ C− F is a connected component} = ∂V ∩ (C− F )

(2.81)
Therefore, ∂V ⊂ F holds. ■

Theorem 2.4.1. Let γ ∈ C0 ([0, 1],C) be a simple curve:

γs = γt ⇒ s = t (2.82)

i.e., a curve with no self-intersection. Then, the complement ¬[γ] = C − [γ] is
a domain.

Proof. The continuous image [γ] = γ[0, 1] of a compact interval [0, 1] is compact
by Theorem 2.1.5; by Theorem 2.1.3, [γ] ⊂ C is closed. Hence, ¬[γ] is open.

Suppose, for contradiction, that ¬[γ] is not connected. Then ¬[γ] has at
least two connected components. Since [γ] is bounded, at least one connected
component V∞ is unbounded; let V be another connected component of ¬[γ].
Recalling [γ] ⊂ C is bounded, let R > 0 such that [γ] ⊂ BR(0); let γRθ =
R exp

√
−1θ be the corresponding closed curve on ∂BR(0) = {z ∈ C | |z| = R}.

As shown in Theorem 2.1.6, C−BR(0) is connected but [γ]∩ (C−BR(0)) = ∅.
Hence C−BR(0) ⊂ V∞, since C−BR(0) is unbounded. It follows:

BR(0) ⊃ ¬V∞ ⊃ V. (2.83)
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Since γ is injective, the corestriction γ : [0, 1] → [γ] is bijective; by Theo-
rem 1.2.6, γ ∈ C0 ([0, 1], [γ]) is a continuous bijection. Applying Theorem 1.2.17,
the inverse is also continuous:

γ−1 ∈ C0 ([γ], [0, 1]) . (2.84)

By Lemma 1.2.1, [γ] ⊂ BR(0) is a closed subspace. Hence, γ−1 has a continuous
extension φ on BR(0) ⊃ [γ] by Lemma 1.3.4:

φ ∈ C0
(
BR(0), [0, 1]

)
(2.85)

such that φ|[γ] = γ−1. Consider the composition γφ : BR(0) → [γ]. Since both

are continuous, γφ ∈ C0
(
BR(0), [γ]

)
. Moreover, the restriction γ ◦ φ|[γ] is an

identity on [γ]. Define f : BR(0) → BR(0):

fz :=

{
z z ∈ BR(0)− V

γφz z ∈ V
(2.86)

By definition, both f |
BR(0)−V and f |V are both continuous; recalling V is open,

f |∂V=V−V is identity, so is continuous. Therefore, f ∈ C0
(
BR(0), BR(0)

)
.

Since f |∂BR(0) is identity, we obtain:

f∂BR(0) ⊂ ∂BR(0). (2.87)

Then, for the curve on ∂BR(0) γRθ = R exp
√
−1θ, θ ∈ [0, 2π] and z ∈ BR(0),

we obtain n (fγR, z) = 1 since fγR circles around z once:

fγRθ = f
(
R exp

√
−1θ

)
= R exp

√
−1θ. (2.88)

By Theorem 2.3.1, we obtain BR(0) ⊂ fBR(0). Consider the image of BR(0)
over f :

fBR(0) ⊂
(
BR(0)− V

)
∪ γφV ⊂

(
BR(0)− V

)
∪ [γ]. (2.89)

Recalling V ⊂ BR(0), any point in V is not in the image of f , namely V ̸⊂
fBR(0). Therefore, we have

BR(0) ̸⊂ fBR(0), (2.90)

which is absurd. ■

Definition 2.4.1 (Jordan Curves). A curve γ ∈ C0 ([0, 1],C) is called a Jordan
curve iff it is closed, γ0 = γ1, and the restriction γ|[0,1) is a simple curve:

∀s, t ∈ [0, 1) : γs = γt ⇒ s = t. (2.91)

Lemma 2.4.2. Let γ ∈ C0 ([0, 1],C) be a Jordan curve. If ¬[γ] = C − [γ] is
not connected, the boundary of each connected component of ¬[γ] is [γ].
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Proof. Since [γ] ⊂ C is compact – bounded and closed – at least one connected
component of ¬[γ] is unbounded. Let V∞ be an unbounded connected compo-
nent of ¬[γ]. If R > 0 is sufficiently large such that [γ] ⊂ BR(0), since C−BR(0)
is unbounded:

C−BR(0) ⊂ V∞. (2.92)

The ⊂-largest property implies such an unbounded component is unique.
Since ¬[γ] is disconnected, there is at least one bounded connected com-

ponent, say V . By Lemma 2.4.1, ∂V∞ ⊂ [γ] and ∂V ⊂ [γ]. To show these
inclusions are equalities, suppose for contradiction that ∂V ⊊ [γ]. Shifting the
parameter, we may set

γ0 = γ1 ∈ [γ]− ∂V. (2.93)

Then, there are 0 < a < b < 1 such that:

γ[a, b] ⊃ ∂V. (2.94)

Since γ|[a,b] is a simple curve, C − γ[a, b] is connected by Theorem 2.4.1. By

Corollary 2.1.8.1 in Theorem 2.1.8, C − γ[a, b] is path-connected. Hence, for
z ∈ V and z∞ ∈ V∞, there is a curve in C− γ[a, b] ⊂ C− ∂V . Since ∂V ∩ V =
∅ = ∂V ∩ V∞:

V ∪ V∞ ⊂ C− ∂V (2.95)

It follows V ∪V∞ is path-connected, and hence connected, which is absurd. ■

Theorem 2.4.2 (Jordan Curve Theorem). Let γ be a Jordan curve in C. The
open subspace ¬[γ] = C − [γ] has exactly two connected components, one is
unbounded and the other is bounded. If we let V be the bounded connected
component and V∞ be the unbounded connected component of ¬[γ], ∂V = [γ] =
∂V∞ is the case.

Proof. Since [γ] is a compact subspace in C, by Corollary 2.1.4.1, there are
z1, z2 ∈ [γ] such that

δ[γ] := sup
ζ1,ζ2∈[γ]

|ζ1 − ζ2| = |z1 − z2| . (2.96)

Shifting and rotating the curve, we may set z1 = −1 and z2 = +1:

ℑ

ℑ
+1−1

(2.97)
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Since the diameter of [γ] is now 2, from −1 to +1,

[γ] ⊂ E := {z ∈ C | |ℑz| ≦ 2 ∧ |ℜz| ≦ 1} (2.98)

with
[γ] ∩ ∂E = {−1,+1}, (2.99)

otherwise, the diameter would be greater than 2. By Theorem 2.3.2, γ and
[−2

√
−1, 2

√
−1] meet:

[γ] ∩ [−2
√
−1, 2

√
−1] ̸= ∅. (2.100)

Since [γ] is compact and [−2
√
−1, 2

√
−1] ⊂ C is closed, by Theorem 1.2.15, [γ]∩

[−2
√
−1, 2

√
−1] is compact. Since ℑ : C → R is a projection, by Theorem 1.2.18,

ℑ is continuous; applying Theorem 2.1.4, ℑ
(
[γ] ∩ [−2

√
−1, 2

√
−1]
)
has extreme

values:
l := maxℑ

(
[γ] ∩ [−2

√
−1, 2

√
−1]
)
. (2.101)

Then [2
√
−1, l

√
−1) ∩ [γ] = ∅. Since ±1 subdivide γ into two simple curves

between ±1, we let γ+ be the one that l
√
−1 belongs to:

l
√
−1 ∈ [γ+]. (2.102)

Define
m := minℑ

(
[γ+] ∩ [−2

√
−1, 2

√
−1]
)
. (2.103)

It is worth mentioning l ≧ m. Then (m
√
−1,−2

√
−1] ∩ [γ+] = ∅. Let[

l
√
−1,m

√
−1
]
γ+

⊂ [γ+] (2.104)

denote the curve segment in γ+ from l
√
−1 to m

√
−1.

We will show [γ−]∩(m
√
−1,−2

√
−1] ̸= ∅. Consider a curve between±2

√
−1:

[2
√
−1, l

√
−1] ⋄

[
l
√
−1,m

√
−1
]
γ+

⋄ [m
√
−1,−2

√
−1], (2.105)

where ⋄ stands for the concatenation of two curves. By Theorem 2.3.2, such a
curve between ±2

√
−1 and γ− between ±1 must meet. Since [γ−] ⊂ [γ] does

not meet [2
√
−1, l

√
−1), and l

√
−1 ∈ [γ+], we conclude:

[γ−] ∩ [2
√
−1, l

√
−1] = ∅. (2.106)

Moreover,
[
l
√
−1,m

√
−1
]
γ+

⊂ [γ+], andm
√
−1 ∈ [γ+]. Hence, (m

√
−1,−2

√
−1]

must meet [γ−]:
[γ−] ∩ (m

√
−1,−2

√
−1] ̸= ∅. (2.107)

Since the intersection [γ−] ∩ [m
√
−1,−2

√
−1] is non-empty and compact:

p := maxℑ
(
[γ−] ∩ [m

√
−1,−2

√
−1]
)

q := minℑ
(
[γ−] ∩ [m

√
−1,−2

√
−1]
) (2.108)
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By definition, m ≧ p but [γ+] ∩ [γ−] = {±1} but the intersection is on the
imaginary axis, we have m ̸= p:

m > p. (2.109)

Hence (m
√
−1, p

√
−1) ∩ [γ] = ∅. In particular,

z0 :=
m
√
−1 + p

√
−1

2
̸∈ [γ]. (2.110)

Recalling [γ] is compact, its complement ¬[γ] should have an unbounded con-
nected component; let V∞ be such an unbounded component of ¬[γ]. Let R > 0
be sufficiently large [γ] ⊂ BR(0). Since C − BR(0) ⊂ ¬[γ] is connected, see
Theorem 2.1.6 and unbounded, we obtain:

C−BR(0) ⊂ V∞. (2.111)

The ⊂-largest property of V∞ implies such an unbounded component of ¬[γ] is
unique. Then z0 ∈ Eι, since ℜz0 = 0 and

ℑz0 =
m+ p

2
< m ∈ [−2, 2]. (2.112)

We will show that the connected component of ¬[γ] around z0 is not V∞.
Suppose, for contradiction, that z0 is in V∞. Since V∞ is connected, there is a
curve in V0 from z0 to some point in ¬E, since ¬E ⊂ ¬[γ] is unbounded:

α ∈ C0(I, V∞), (2.113)

where α0 = z0 ∈ Eι and α1 ∈ ¬E. Define

t0 := inf {t ∈ I | αt ̸∈ Eι} (2.114)

and w0 := αt0. We will show w0 ∈ E − Eι = ∂E:

• w0 ∈ E

Let ϵ > 0 and consider Bϵ(w0). Since α is continuous, its preimage
α←Bϵ(w0) ⊂ I is open. Hence, there is δ > 0 with (t0 − δ, t0 + δ) ⊂
α←Bϵ(w0):

α(t0 − δ, t0 + δ) ⊂ Bϵ(w0). (2.115)

In particular t0 − δ
2 < t0 = inf {t ∈ I | αt ̸∈ Eι}:

α

(
t0 −

δ

2

)
̸= αt0 = w0 (2.116)

and α
(
t0 − δ

2

)
∈ Eι ⊂ E. Hence, it follows w0 ∈ E = E:

Bϵ(w0) ∩ E − {w0} ≠ ∅. (2.117)
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• w0 ̸∈ Eι

Suppose, for contradiction, that w0 is an interior point of E. Then there is
ϵ > 0 with Bϵ(w0) ⊂ Eι. Then, around t0, there is some δ > 0 with α(t0−
δ, t0 + δ) ⊂ Bϵ(w0) since α is continuous. Then α

(
t0 +

δ
2

)
∈ Bϵ(w0) ⊂ Eι

implies t0 +
δ
2 > t0 would be a lower bound of {t ∈ I | αt ̸∈ Eι}, which is

absurd.

Let α0 := α|[0,t0] be the curve from z0 to w0 ∈ ∂E. Recalling w0 ∈ V∞ ⊂
¬[γ], w0 ̸= ±1, hence ℑw0 ̸= 0:

• ℑw0 < 0 case

We have [w0,−2
√
−1]∂E ⊂ ∂E, connecting w0 and −2

√
−1 along with the

edge of the rectangle E, without traversing ±1. Then, since α0 is a curve
in V∞ from z0 ∈ Eι to w0 ∈ ∂E:

[2
√
−1, l

√
−1] ⋄ [l

√
−1,m

√
−1]γ+

⋄ [m
√
−1, z0] ⋄ [α0] ⋄ [w0,−2

√
−1]∂E
(2.118)

does not meet γ−, which is absurd.

• ℑw0 > 0

We have [w0, 2
√
−1]∂E ⊂ ∂E, connecting w0 and 2

√
−1 along with the

edge of the rectangle E, without traversing ±1. Then,

[−2
√
−1, z0] ⋄ [α0] ⋄ [w0, 2

√
−1]∂E (2.119)

does not meet γ+, which is absurd.

Hence, z0 ̸∈ V∞. Let V be a connected component of ¬[γ] with z0 ∈ V :

V ∩ V∞. (2.120)

Finally, we will show the unbounded connected component is unique. Suppose
W ⊂ ¬[γ] is another unbounded component. Since ¬[γ] ⊃ ¬E, we obtain

V∞ ⊃ ¬E. (2.121)

That is, the exterior of E is in V∞. Hence, unbounded components are all in E:

V ⊂ E ∧W ⊂ E. (2.122)

Define a curve [β] between ±2
√
−1:

[2
√
−1, l

√
−1]⋄[l

√
−1,m

√
−1]γ+⋄[m

√
−1, p

√
−1]⋄[p

√
−1, q

√
−1]γ−⋄[q

√
−1,−2

√
−1].

(2.123)

• [2
√
−1, l

√
−1], [q

√
−1,−2

√
−1] ⊂ V∞

Since [2
√
−1, l

√
−1] can be connected with 3

√
−1 ∈ ¬E ⊂ V∞, [2

√
−1, l

√
−1] ⊂

V∞.
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• [l
√
−1,m

√
−1]γ+ , [p

√
−1, q

√
−1]γ− ⊂ [γ]

By the very definition, they are segments of the original curve γ.

• [m
√
−1, p

√
−1] ⊂ V

Since [m
√
−1, p

√
−1] contains z0 ∈ V , [m

√
−1, p

√
−1] ⊂ V .

Then [β]∩W = ∅, since [β] ⊂ V∞∪ [γ]∪V . Since ±1 ̸∈ [β], there are open balls
D± ∈ N±1 with D± ∩ [β] = ∅, choosing their diameters smaller than d([β],±1).
Since ∂W = [γ] by Lemma 2.4.1, and ±1 ∈ [γ], ±1 are limit points of W :

W ∩D± ̸= ∅. (2.124)

Let a± ∈ W ∩D±, c be a curve from a− to a+, and

[−1, a−] ⋄ [c] ⋄ [a+, 1] (2.125)

be a curve between ±1. This curve in E, connecting ±1, does not meet β, which
is absurd. Hence, the bounded component of ¬[γ] must be unique. ■

Definition 2.4.2 (Interior and Exterior of Jordan Curves). For a Jordan curve
γ in C, we call the unbounded connected component V∞ of ¬[γ] the exterior of γ,
and the bounded component V the interior of γ. As examined in Theorem 2.2.2,
the winding number on V∞ is zero.

Theorem 2.4.3. Let γ be a Jordan curve in C. The winding number of γ
satisfies |n (γ, z)| = 1 for any point z in the interior of γ.

Proof. We will use the same notation in the proof of Theorem 2.4.2. Assume γ+
is a curve from +1 to −1; we will show n(γ, )|V = +1, where V is the interior
of γ. Let δ+ be the line segments from −1 to +1 along ∂E:

[δ+] = [−1,−1+ 2
√
−1] ⋄ [−1+ 2

√
−1,+1+ 2

√
−1] ⋄ [+1+ 2

√
−1,+1] (2.126)

Let γ+ + δ+ be the composite curve from +1 to −1 along γ+, and from −1 to
+1 along δ+. It follows that γ+ + δ+ is a Jordan curve. Since −3

√
−1 ∈ ¬E

and ¬E ⊂ V∞ (γ+ + δ+), the presence of a line segment [z0,−3
√
−1] implies z0

is in the exterior of γ+ + δ+, namely z0 ∈ V∞ (γ+ + δ+):

n (γ+ + δ+, z0) = 0. (2.127)

Similarly, for

[δ−] = [+1,+1− 2
√
−1] ⋄ [+1− 2

√
−1,−1− 2

√
−1] ⋄ [−1− 2

√
−1,−1] (2.128)

we obtain
n (γ− + δ−, z0) = 0 (2.129)

since z0 ∈ V∞ (γ− + δ−). Recalling Definition 2.2.2, we can write:

0 = n (γ+ + δ+, z0) + n (γ− + δ−, z0) = n (γ, z0) + n (δ+ + δ−, z0) . (2.130)
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As demonstrated in the proof of Theorem 2.3.2, since δ+ + δ− cycles around z0
clockwise once:

n (δ+ + δ−, z0) = −1, (2.131)

we conclude n (γ, z0) = +1. ■

Remark 12. We can use Theorem 2.2.3 to show this claim.
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