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Chapter 0

Introduction

This note is an introduction to thermodynamics, a classical macroscopic theory
about the interconversion of heat and work. Following closely [Tas01], we adopt
an axiomatic approach. Here is a list of postulates:

• (Definition 1.1.5) A thermodynamic system is expressed by a single in-
tensive parameter “temperature” and a finite set of extensive parameters
when in thermal equilibrium.

• (Definition 1.2.2) Joule’s Experiment – at least one adiabatic process keeps
the extensive parameters of a state constant, but the ”temperature” in-
creases. Within this “temperature” increasing process, some positive work
must be done on the system.

• (Definition 1.2.3) The First Law of Thermodynamics – the work done by
a thermodynamic system during an adiabatic process depends solely on
both initial and final states.

• (Definition 1.2.6) Planck’s Statement – The above-mentioned “tempera-
ture” increasing Joule’s experiment is irreversible.

• (Definition 1.3.2) Thermal interactions between systems behave “well.”

• (Definition 1.4.2) Adiabatic Expansion – For any state, there is a lower
temperature state which is accessible via an adiabatic process.

We assume working knowledge of both mathematics and physics, in particular
Newton’s mechanics.
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Chapter 1

Thermodynamics

Thermodynamics is a branch of classical and macroscopic physics. A typical
target – a tablespoon of water – contains some Avogadro number ∼ 1023 of
chemical components and it is impossible to trace their motions by solving 1023

equations of motion! Our macroscopic observations and experiments are based
on their averages; surprisingly small numbers of parameters survive and they
determine the macroscopic state of substances.

We (temporarily) restrict our attention to simple systems, defined
as systems that are macroscopically homogeneous, isotropic, and
unchanged, that are large enough so that surface effects can be ne-
glected, and that are not acted on by electric, magnetic, or gravita-
tional fields [Cal60].

1.1 Equilibrium States

We consider physical systems under certain, special, states – equilibrium states.

1.1.1 Extensive Parameters

In short, a thermodynamic system is a black box with some mechanically ac-
cessible channel – we can measure work, energy, and the like through such
mechanical handles, to reveal both mechanical and non-mechanical properties
of thermodynamic systems. Let us consider a single kind of substance as a sim-
ple system. Such a thermodynamic system, say X, can have several different
states; here, our focus is on the macroscopically unchanged equilibrium states.
Some finite parameters fully characterize such an equilibrium state of a system:

Definition 1.1.1 (Extensive Variables). Let X be a thermodynamic system.
We suppose that its equilibrium state is fully determined by specifying some
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finite, non-negative, parameters, sayX1

...
Xn

 ∈ R≧0
n (1.1)

s.t., for any scalar λ > 0:

λ

X1

...
Xn

 =

λX1

...
λXn

 . (1.2)

Such parameters are called extensive parameters.

Example 1.1.1 (Fluids). Consider a fixed volume, say a cylinder V of fluid;
let m be its mass. Its macroscopic state is represented as(

V
m

)
. (1.3)

Consider λ = 2 case. The left-hand side:

2

(
V
m

)
(1.4)

means we set two identical cylinders of fluids and recognize them as a single
system. The right-hand side: (

2V
2m

)
(1.5)

is a system that has double volume 2V with double mass 2m. The assumption
states that we identify these two systems.

Remark 1 (Amount of Substance). For a single-component system of substance,
say X, we may define the amount n(X) of substance:

n(X) :=
m

M(X)
, (1.6)

whereM(X) is an arbitrary constant. As we can verify, n(X) is also an extensive
parameter. Since M(X) is arbitrary, we may set:

• M(X) = 1

We may use the mass as the amount of substance.

• M(X) is the “atomic weight” of X

Relative to 12C, i.e., the relative atomic mass of entity X is given by:

Ar(X) :=
m(X)
m(12C)

12

(1.7)
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see Atomic Weights and Isotopic Compositions - Column Descriptions.1

You can use a table of Standard Atomic Weights2 or through some classical
gravimetric analysis to choose M(X).

For a multiple-component system, X = {Xi | i ∈ I} of some index I, if X is
chemically unchanged, we may apply

n(Xi) :=
mi

M(Xi)
(1.8)

for i ∈ I. Then the total amount n(X) is given by their sum:
∑

i∈I n(Xi).
So, having a table of atomic masses, we can determine the compositional

formula for a multiple-component system X. For example, the following sub-
stances have CH as their chemical – empirical – formula:

• acetylene (C2H2)

• benzene (C6H6)

If Boyle-Charles law is a good approximation, namely if “temperature” is rela-
tively high and the density is relatively low, we may determine, for any gas:

R :=
pV

mT
(1.9)

where p stands for pressure, V is the volume, m is the mass, and T is absolute
“temperature,” which will be introduced later, see Definition 1.4.3, of a given
gas. Then, as an experimental fact, we have

Racetylene ≈ 3Rbenzene (1.10)

So, if we set M (acetylene) and M (benzene) s.t.,

M (acetylene)

M (benzene)
≈ 3 (1.11)

then we establish, as a good approximation:

pV

nT
= constant, (1.12)

between acetylene and benzene. I.e., if we choose acetylene = CkHl with some
numbers k and l, then benzene = C3kH3l. Such an equation is called an equation
of state, see Example 1.3.1.

Exercise 1.1.1. Find the definition of molar gas constant R from CODATA.3

1https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-column-descriptions
2https://www.nist.gov/pml/periodic-table-elements
3https://physics.nist.gov/cuu/Constants/

5

https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-column-descriptions
https://www.nist.gov/pml/periodic-table-elements
https://physics.nist.gov/cuu/Constants
https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-column-descriptions
https://www.nist.gov/pml/periodic-table-elements
https://physics.nist.gov/cuu/Constants/


We use the amount N of substance as an extensive parameter of a system:(
V
N

)
(1.13)

Definition 1.1.2 (Juxtaposition). We can consider two systems X and Y as a
single system:

X ⊕ Y =

X1

...
Xn

⊕
Y 1

...
Y m

 (1.14)

Note that these two systems have, in general, different number of “components.”
Since X ⊕ Y forms another system, for λ > 0,

λ (X ⊕ Y ) = (λX)⊕ (λY ) . (1.15)

1.1.2 Walls

Some extensive parameter of a system has mechanical access, e.g., a cylinder-full
of gas with a movable piston.

Definition 1.1.3 (Walls – Insertion and Removal). Let 0 < λ < 1. Consider
the following operation:

X 7→ λX ⊕ (1− λ)X. (1.16)

This can be done, experimentally, by inserting a thin impermeable wall that
does not allow to matter go through.

We suppose that for an equilibrium state of a system, both insertion and
removal of a wall require no mechanical work.

Example 1.1.2. Let X be a system in Example 1.1.1,

(
V
N

)
. Suppose L is a

typical length scale of the system X. Then the volume V is L3 order:

V ∈ Θ(L3) (1.17)

Any wall has L2 order surface area. Hence, the work W to insert/remove a wall
is L2 order:

W ∈ Θ(L2). (1.18)

Then for any permissible error ϵ > 0, we may choose a sufficiently large L > 0
s.t., ∣∣∣∣WV

∣∣∣∣ < ϵ. (1.19)

That is, the ratio W
V behaves like 1/L so that as L 99K∞, W

V 99K 0. Hence, as
a thermodynamic limit L 99K +∞, we may suppose that no cost is required for
wall insertion/removal for an equilibrium state of a system.
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Remark 2. If a wall separates two different systems, for instance, between X
and Y in X ⊕ Y , to keep the removal process “quasistatic,” both states must
be “balanced.”

Definition 1.1.4 (Adiabatic Walls and Isolated Systems). A wall is called an
adiabatic wall iff it does not allow any “heat” transfer. Since “heat” is not
yet introduced, let us define adiabatic walls as a special constraint between the
system and its complement – environment. A system is called isolated iff it does
not interact with its environment. Such an isolated system is, experimentally,
achieved by enclosing it in adiabatic walls, e.g., a double-walled thermos.

Definition 1.1.5 (Postulate: Equilibrium States of Adiabatic Systems). Let
X be a thermodynamic system. With adiabatic walls, we may isolate X from
the environment. I.e., X is an adiabatic system. Fixing its extensive param-
eters

{
X1, · · · , Xn

}
, we suppose that the system will eventually become an

equilibrium state: T ;

X1

...
Xn


 , (1.20)

where T of the equilibrium “temperature” is some parameter. Such a final
equilibrium “temperature” depends solely on the initial state of the system X.
Note that the existence of equilibrium states is sometimes called “minus first
law.”

We also assume that the “temperature” of the equilibrium state is an in-
tensive parameter, namely if we consider λX, λ > 0 of a scaled system, it will
eventually become: T ;

λX1

. . .

λXn


 . (1.21)

That is, under X 7→ λX, the “temperature” does not change.

Remark 3 (Positive “Temperature”). If you use the degree Celsius, add 273.15;
if you use the degree Fahrenheit, add 459.67, so that T > 0. See SI Units –
Temperature.4

1.2 Adiabatic Processes

We consider processes, keeping systems isolated from the external environment.

1.2.1 Adiabatic and Quasistatic Processes

Definition 1.2.1 (Adiabatic and Quasistatic Adiabatic Processes). Let X1 7→
X2 be a process between two states of some system. If we enclose the system in

4https://www.nist.gov/pml/owm/si-units-temperature
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adiabatic walls, we can “thermally” isolate the system from the environment.
Under such an adiabatic condition, the thermodynamic states transition as fol-
lows:

(T1;X1)
a−→ (T2;X2), (1.22)

where both initial and final states are in equilibrium. Note that, for a given
initial “temperature” T1, the initial equilibrium state (T1;X1), and the final
equilibrium state X2, the final “temperature” is fully determined by the state
X2 itself along with this adiabatic process.

Note that an adiabatic process, physically, does not have to be gen-
tle, or “static” or anything of the kind. It can be arbitrarily violent!5

If the process is so slow that not only initial and final states but also all
the intermediate states are in equilibrium, then such a virtual process is called
quasistatic. We use

(T1;X1)
qa−→ (T2;X2) (1.23)

for a quasistatic adiabatic process.

Quasi-static processes are done slowly enough that the system re-
mains at thermodynamic equilibrium at each instant, despite the fact
that the system changes over time. The thermodynamic equilibrium
of the system is necessary for the system to have well-defined values
of macroscopic properties such as the temperature and the pressure
of the system at each instant of the process. Therefore, quasi-static
processes can be shown as well-defined paths in state space of the
system.6

As basic postulates of thermodynamics, we assume:

• The final “temperature” of an quasistatic adiabatic process (T1;X1)
qa−→

(T2;X2) is continuous with respect to X2:

X2 99K X1 ⇒ T2 99K T1. (1.24)

In other words, t(X2) = T2 satisfies limX2→X1 t(X2) = t(X1) = T1.

• A quasistatic adiabatic process (T1;X1)
qa−→ (T2;X2) has its inverse: (T1;X1)

qa←−
(T2;X2).

It is worth mentioning that both a quasistatic adiabatic process and its inverse
are quasistatic adiabatic processes:

(T1;X1)
qa←→ (T2;X2) (1.25)

5Elliott H. Lieb and Jakob Yngvason “A Guide to Entropy and the Second Law of Ther-
modynamics”

6University Physics Volume 2 §3.4 Thermodynamic Processes
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Remark 4. We will soon give a characterization of an adiabatic process in Def-
inition 1.2.3 in terms of energy.

Definition 1.2.2 (Postulate: The Existence Of “Temperature” Increasing Adi-
abatic Process). Let (T1;X) be an equilibrium state. For any T2 > T1, we
assume that there exists an adiabatic process that keeps the extensive parame-
ters:

(T1;X)
a−→ (T2;X) . (1.26)

Within this process, some positive work must be done on the system. That is,
the work done by the system is negative.

Remark 5. See, for example, December 1840: Joule’s abstract on converting
mechanical power into heat7, College Physics 2e §14.1 Heat, and University
Physics Volume 2 §1.4 Heat Transfer, Specific Heat, and Calorimetry.

Lemma 1.2.1. Let X1, X2 be physically accessible states, i.e., there are some
operations X1 7→ X2 and X2 7→ X1. Then, for arbitrary T1, T2 > 0, either

(T1;X1)
a−→ (T2;X2) (1.27)

or
(T1;X1)

a←− (T2;X2) (1.28)

exists.

Proof. By assumption, there exists a quasistatic adiabatic process

(T1;X1)
qa−→ (T ′;X2), (1.29)

where T ′ is an unknown final “temperature” of this process.

• T ′ < T2 case

If T ′ < T2, by Definition 1.2.2, there is an adiabatic process:

(T ′;X2)
a−→ (T2;X2). (1.30)

Hence their combination is the desired process:

(T1;X1)
qa−→ (T ′;X2)

a−→ (T2;X2). (1.31)

• T ′ ≧ T2 case

If T ′ = T2, nothing has to be shown:

(T1;X1)
qa−→ (T ′ = T2;X2). (1.32)

So we may suppose T ′ > T2. By Definition 1.2.1, there exists

(T1;X1)
qa←− (T ′;X2). (1.33)

Recalling T2 < T ′, we obtain the desired process:

(T2;X2)
a−→ (T ′;X2)

qa−→ (T1;X1). (1.34)
7https://www.aps.org/publications/apsnews/200912/physicshistory.cfm
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Thus either (T1;X1)
a−→ (T2;X2) or (T1;X1)

a←− (T2;X2) exists. ■

Definition 1.2.3 (Postulate: First Law of Thermodynamics). We assume, as
a characterization of an adiabatic process, that the work done by the system
during an adiabatic process depends only on the initial and final states.

In other words, as the work is “flow,” there exists a corresponding “stock,”
the internal energy U , of the system:

U(T1;X1) ⇓Wad

// U(T2;X2) Wad = U(T1;X1)− U(T2;X1). (1.35)

For a system, we choose a reference equilibrium state (T∗;X∗), where X∗ is
some physically accessible state. If we consider λX, λ > 0, then (T∗, λX∗) is the
corresponding reference point for the scaled system. By Lemma 1.2.1, there is
either (T∗, λX∗)

a−→ (T ;λX) or (T∗, λX∗)
a←− (T ;λX), we choose

U(T ;λX) :=

−Wad

(
(T∗, λX∗)

a−→ (T ;λX)
)

if (T∗, λX∗)
a−→ (T ;λX) exists

Wad

(
(T∗, λX∗)

a←− (T ;λX)
)

otherwise

(1.36)
We assume, for later analysis, some good analytical properties. For example, U
is continuous:

(T1;X1) 99K (T2, ;X2)⇒ U(T1;X1) 99K U(T2, ;X2). (1.37)

See College Physics §15.1 The First Law of Thermodynamics, University
Physics Volume 2 §3.3 First Law of Thermodynamics, and Definition 1.3.3.

Lemma 1.2.2. The internal energy for a fixed system X is an increasing func-
tion of “temperature.” That is,

T1 < T2 ⇒ U(T1;X) < U(T2;X). (1.38)

Proof. For the adiabatic process in Definition 1.2.2:

(T1;X)
a−→ (T2;X) , T1 < T2, (1.39)

the work W done by the system is negative:

U(T1;X)
⇓W<0

// U(T2;X) (1.40)

That is,
W = U(T1;X)− U(T2;X) < 0. (1.41)

Hence, if T1 < T2, along with the corresponding adiabatic process, we have
U(T1;X) < U(T2;X). ■

Definition 1.2.4 (Heat Capacity at Constant Volume). The following quantity
is called the heat capacity at constant volume:

CV (T ;X) :=
∂U(T ;X)

∂T
. (1.42)

See College Physics §14.2 Temperature Change and Heat Capacity and Univer-
sity Physics Volume 2 §3.5 Heat Capacities of an Ideal Gas.
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1.2.2 Reversible Process

Definition 1.2.5 (Reversible Process). An adiabatic process

(T1;X1)
a−→ (T2;X2) (1.43)

is called reversible iff there exists an adiabatic process:

(T1;X1)
a←− (T2;X2). (1.44)

If such an inverse process does not exist, or it is not an adiabatic process, then
the process is called irreversible.

A quasistatic adiabatic process is, by Definition 1.2.1, a reversible process:

(T1;X1)
qa←→ (T2;X2).

Definition 1.2.6 (Postulate: Planck’s Statement). The “temperature” increas-
ing adiabatic process in Definition 1.2.2:

(T1;X)
a−→ (T2;X) , T1 < T2, (1.45)

is irreversible; if (T1;X)
a−→ (T2;X) exists, T1 ≦ T2.

1.3 Isothermal Processes

We will consider processes under a constant “temperature” condition, from
(T ;X1) to (T ;X2), for instance. Experimentally, it is achieved by keeping ther-
mal contact with some “temperature” reservoir – a.k.a., a“heat” bath and/or a
thermostat – such as the atmosphere and the sea of the Earth. The nature of a
heat bath is its large size.

An isothermal process is a change in the state of the system at a
constant temperature. This process is accomplished by keeping the
system in thermal equilibrium with a large heat bath during the pro-
cess. Recall that a heat bath is an idealized “infinitely” large system
whose temperature does not change. In practice, the temperature
of a finite bath is controlled by either adding or removing a finite
amount of energy as the case may be.8

1.3.0 Heat Bath – Construction

Let X1, X2 be states of a system, Y be a state, and λ > 0. Consider X1 ⊕ λY
and a fixed process X1 7→ X2. If we keep the system X1 ⊕ λY isolated from
their environment, we have the following:

(T ;X1 ⊕ λY )
a−→ (Tλ;X2 ⊕ λY ) , (1.46)

8University Physics Volume 2 §3.4 Thermodynamic Processes
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where Tλ is some unknown final “temperature.” The final “temperature” and
the work Wλ done by the system during this adiabatic process:

U(T ;X1 ⊕ λY )
⇓Wλ

// U (Tλ;X2 ⊕ λY ) (1.47)

are both functions of the scale λ > 0.

Definition 1.3.1 (Heat Transfer). Let us define the heat transfer Qλ from λY
to X1:

Qλ := U(T ;λY )− U (Tλ;λY ) = λ (U(T ;Y )− U (Tλ;Y )) . (1.48)

I.e., the heat transfer is defined via the following:
U(T ;λY ) //

Qλ

��

U (Tλ;λY )

U(T ;X1) ⇓WX

// U (Tλ;X2)

(1.49)

where the work done by the system WX is defined by

U(T ;X1) ⇓WX

// U (Tλ;X2) (1.50)

Lemma 1.3.1. If we write

Wλ := WX +Qλ = U(T ;X1)− U (Tλ;X2) +Qλ (1.51)

then Qλ can be seen as the total heat transfer from the finite size “heat bath”
λY to X1.

Remark 6. It is worth mentioning that, in our formulation, the mechanical
equivalence of heat and energy is built-in; see College Physics §14.1 Heat, Uni-
versity Physics Volume 2 §1.4 Heat Transfer, Specific Heat, and Calorimetry,
University Physics Volume 2 §3.2 Work, Heat, and Internal Energy, Remark 5
and Definition 1.3.3.

Proof. Let us introduce a notation for an adiabatic wall:

((T ;X) | (T ′;λY )) (1.52)

i.e., two system X and λY are separated by an adiabatic wall |. If we enclose
the entire system into adiabatic walls, by replacing the adiabatic wall | into a
diathermal wall slowly, we obtain the corresponding adiabatic process:

((T ;X) | (T ′;λY ))
a−→

(
T̃ ;X ⊕ λY

)
. (1.53)

Since no work is done under this process, see Definition 1.1.3, we may apply
Definition 1.2.3 of energy conservation:

U(T ;X) + U(T ′;λY ) = U
(
T̃ ;X ⊕ λY

)
= U

(
T̃ ;X

)
+ U

(
T̃ ;λY

)
(1.54)
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Then
U
(
T̃ ;X

)
− U(T ;X) = U(T ′;λY )− U

(
T̃ ;λY

)
(1.55)

is the transferred energy from λY to X. Hence, for the process in (1.49), Qλ is
indeed the transferred heat from λY to X1. ■

To build a heat bath as a constant T -reservoir, we insist the following asser-
tion on the thermal interaction between systems:

Definition 1.3.2 (Postulate: Finite Heat Transfer in Thermodynamic Limit).
We assume limλ→∞Qλ exists. I.e., even we take λ 99K ∞ limit, Qλ does not
diverge. In other words, the thermal interaction between systems X and λY
behaves well.

Lemma 1.3.2. Along with the thermodynamic limit λ 99K ∞, the final “tem-
perature” of the composite system remains constant, limλ→∞ Tλ = T .

Proof. Let ϵ > 0. Recalling the standard definition of convergence via ϵ-δ, as
λ 99K +∞, tλ 99K t means, there exists λϵ > 0 s.t.,

λ ≧ λϵ ⇒ |tλ − t| < ϵ. (1.56)

Suppose for contradiction that T ̸= limλ→∞ Tλ. Then, for any λ > 0, there
exists δ > 0 with |Tλ − T | ≧ δ. By Lemma 1.2.2, T 7→ U(T ;Y ) is an increasing
function. Hence, if Tλ ̸= T ,

U(T ;Y )− U (Tλ;Y ) ̸= 0, (1.57)

i.e., there exists some δ′ > 0 with

|U(T ;Y )− U (Tλ;Y )| ≧ δ′. (1.58)

Hence, as λ 99K +∞,

|Qλ| = λ |U(T ;Y )− U (Tλ;Y )| ≧ λδ′ 99K +∞, (1.59)

which is absurd. Therefore, limλ→∞ Tλ = T . ■

Under λ 99K∞ limit, the attached system λY behaves like an ambient envi-
ronment, keeping the “temperature” of the system X constant. This property
is nothing but T -reservoir, i.e., a heat bath. The processes under such constant
T environment is called isothermal processes:

1.3.1 Isothermal Process and Heat

Definition 1.3.3 (Heat Bath and Isothermal Process). For X1 ⊕ λY, λ > 0, if
we identify X1 as a system and λY as the environment, λY under λ 99K +∞ is
called a heat bath or T -reservoir. Then (1.51) converges, i.e.,

W := lim
λ→∞

Wλ = lim
λ→∞

U(T ;X1)−U (Tλ;X2)+Qλ = U(T ;X1)−U (T ;X2)+Q.

(1.60)
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Moreover, it represents the energy conservation for an isothermal process from
X1 to X2 under a constant T :

U(T ;X1) ⇓W

⇓Q // U(T ;X2) (1.61)

It is also called the first law of thermodynamics – energy conservation – see
Definition 1.2.3.

Remark 7 (Impossibility of Perpetual Motion Machine of First Kind). As a
consequence, there exists no perpetual motion machine of the first kind – an
“engine” that provides positive work with no external energy source: violation
of energy conservation.

It is worth mentioning that Q−W = U(T ;X2)−U(T ;X1) does not depend
on the thermodynamic path from X1 to X2 under the constant T , see Figure
3.7 in University Physics Volume 2 §3.3 First Law of Thermodynamics.

Definition 1.3.4 (Isothermal Processes). As we established in Definition 1.3.3,
we call an operation X1 7→ X2 under constant “temperature” T an isothermal
process:

(T ;X1)
i−→ (T ;X2). (1.62)

An isothermal process is called a quasistatic isothermal process iff it is so slow
that any intermediate state can be seen as an equilibrium state:

(T ;X1)
qi−→ (T ;X2). (1.63)

Any quasistatic isothermal process has the inverse

(T ;X1)
qi←→ (T ;X2), (1.64)

see Definition 1.2.1.

Definition 1.3.5 (Cycles). A process is called a cycle iff both initial and final
states coincide.

Theorem 1.3.1 (Kelvin’s Statement). For any isothermal cycle, the work Wcyc

done by the system is non-positive:

Wcyc ≦ 0. (1.65)

Proof. Let X and Y be systems and λ > 0. For a cyclic operation X 7→ X, let
us consider the corresponding adiabatic process:

(T ;X ⊕ λY )
a−→ (Tλ;X ⊕ λY ) . (1.66)

By Definition 1.2.6, we obtain
T ≦ Tλ. (1.67)
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Hence, by Lemma 1.2.2,

U(T ;X) ≦ U (Tλ;X)

U(T ;Y ) ≦ U (Tλ;Y )
(1.68)

Since the transferred heat Qλ in Definition 1.3.1 is

Qλ = λ (U(T ;Y )− U (Tλ;Y )) ≦ 0, (1.69)

we conclude
Wλ := U(T ;X)− U (Tλ;X

′) +Qλ ≦ 0. (1.70)

If we take λ 99K +∞ limit, we obtain the desired result:

W := lim
λ→∞

Wλ ≦ 0 (1.71)

since Tλ 99K T if λ 99K ∞ and, hence, the transition X 7→ X becomes an
isothermal cyclic process. ■

Remark 8 (Impossibility of Perpetual Motion Machine of Second Kind). There
is no perpetual motion machine of the second kind – no cycle under constant
“temperature” provides positive work outside.

Lemma 1.3.3. The work done during any quasistatic isothermal cycle is zero.

Proof. Let (T ;X)
qi−→ (T ;X) be a quasistatic isothermal cycle and W be the

work done through this cycle. By Theorem 1.3.1, such the work along a cycle
must be non-positive W ≦ 0. By Definition 1.3.4, there exists its inverse process

(T ;X)
qi←− (T ;X). This inverse process is cyclic as well. The work done by this

inverse cycle is −W ; By Theorem 1.3.1 again, −W ≦ 0. Hence, W = 0. ■

1.3.2 Maximum Work and Helmholtz’ Free Energy

One of the fundamental goals of thermodynamics is to examine the conditions to
obtain maximum available, obtainable, energy from a system, a.k.a., “exergy”
of the useful work “potential.”

Maximum Work

Definition 1.3.6 (Maximum Work). Let X1, X2 be states of some system.
Define:

Wmax (T ;X1 7→ X2) := max

{
W

∣∣∣∣ U(T ;X1) ⇓W

⇓Q // U(T ;X2)

}
, (1.72)

where the processes under max run all isothermal processes.

Theorem 1.3.2 (Principle of Maximum Work). The maximum work is the
work done during a quasistatic process:

(T ;X1)
qi−→ (T ;X2). (1.73)
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Proof. Let W,W ′ be the works done by the system during a quasistatic isother-
mal process and an arbitrary isothermal process, respectively. We will show

W ′ ≦ W . By Definition 1.3.4, there exists (T ;X1)
qi←− (T ;X2). Since

(T ;X1)
i --

(T ;X2)
qi
mm (1.74)

forms an isothermal cycle on (T ;X1), we may apply Theorem 1.3.1, the net
work done by this cycle is non-positive:

−W +W ′ ≦ 0. (1.75)

As W ′ is the work done through an arbitrary isothermal process, we obtain the
desired maximum property W ′ ≦ W . ■

Corollary 1.3.2.1 (Path Independence of Maximum Work). The maximum
work Wmax (T ;X1 7→ X2) is path-independent.

Proof. By Theorem 1.3.2, the maximum work Wmax (T ;X1 7→ X2) is given by a
quasistatic isothermal process, so it suffices to show the work done by quasistatic
processes are the same. Consider two quasistatic isothermal processes:

(T ;X1)

qi --

qi
11 (T ;X2) (1.76)

The combination of one and the inverse of the other forms a quasistatic isother-
mal cycle:

(T ;X1)

qi --
(T ;X2)

qi
mm (1.77)

By Lemma 1.3.3, the net work done by such a cycle is zero, hence we conclude
the work done by two quasistatic processes coincide. ■

Exercise 1.3.1 (Properties of Maximum Work). Show the following properties:

1. For λ > 0,

Wmax (T ;λX2 7→ λX1) = λWmax (T ;X1 7→ X2) . (1.78)

2.
Wmax (T ;X2 7→ X1) = −Wmax (T ;X1 7→ X2) (1.79)

3.

Wmax (T ;X1 7→ X3) = Wmax (T ;X1 7→ X2) +Wmax (T ;X2 7→ X3) .
(1.80)
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4. For the following two processes:

(T ;X1)
qi−→ (T ;X2)

(T ;Y1)
qi−→ (T ;Y2)

(1.81)

i.e., through (T ;X1 ⊕ Y1)
qi−→ (T ;X2 ⊕ Y2), the maximum work satisfies:

Wmax (T ;X1 ⊕ Y1 7→ X2 ⊕ Y2) = Wmax (T ;X1 7→ X2)+Wmax (T ;Y1 7→ Y2)
(1.82)

Helmholtz’ Free Energy

By Corollary 1.3.2.1, we may define, as the corresponding stock:

Definition 1.3.7 (Helmholtz’s Free Energy). Thanks to Corollary 1.3.2.1, the
maximum work Wmax (T ;X1 7→ X2) does not depend on any specific path from
(T ;X1) to (T ;X2) transition. Hence, we can define, as a corresponding stock,
Helmholtz’s free energy F via the following stock-flow diagram:

F [T ;X1] ⇓Wmax

// F [T ;X2] (1.83)

I.e., Helmholtz’s free energy is defined via the maximum availability of the
work at a constant “temperature.” Sometimes, it is also called the principle of
maximum work: any isothermal process can not extract more work from the
system than the loss of Helmholtz’s free energy.

As we did for internal energy Definition 1.2.3, we choose a reference point
(T∗;X∗) that is physically accessible to the states we consider; for a scaled
system (T ;λX), λ > 0, we set (T∗;λX∗):

F [T ;λX] := Wmax (T ;λX 7→ λX∗) . (1.84)

We assume, for later analysis, some good analytical properties like internal
energy:

T1 99K T2 ⇒ F [T1;X] 99K F [T2;X]. (1.85)

1.3.3 Equation of State and Pressure

Let us consider a state

(
V
N

)
in Example 1.1.1.

Example 1.3.1 (Fluids – Pressure). Let V = Al be a cylinder with cross-
section A and length l with a movable piston. Under the following quasistatic
isothermal process: (

T ;

(
V
N

))
→

(
T ;

(
V +∆V

N

))
, (1.86)
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where V + ∆V = A (l +∆l), consider the mechanical work W done by the
system. Let F be the force provided by the system. If ∆l is sufficiently small,
up to (∆l)2 order,

W = F∆l =
F

A
A∆l = p∆V, (1.87)

where p = F
A stands for the pressure. As the process is quasistatic isothermal,

W = Wmax, hence, as an equation of the thermodynamic system, we obtain:

p

(
T ;

(
V
N

))
:= lim

∆V→+0

Wmax

(
T ;

(
V
N

)
7→

(
V +∆V

N

))
∆V

= − lim
∆V→+0

F

[
T ;

(
V +∆V

N

)]
− F

[
T ;

(
V
N

)]
∆V

= −
∂F

[
T ;

(
V
N

)]
∂V

.

(1.88)

That is, the pressure of the system is given by the following function:(
T ;

(
V
N

))
7→ p

(
T ;

(
V
N

))
(1.89)

Such one is called the equation of state.

Exercise 1.3.2 (Intensive Property). Show that pressure is an intensive param-
eter:

p

(
T ;λ

(
V
N

))
= p

(
T ;

(
V
N

))
(1.90)

for λ > 0.

Example 1.3.2 (Ideal Gas). As we examined in Remark 1,

p

(
T ;

(
V
N

))
≈ NRT

V
, (1.91)

where T stands for the absolute “temperature.” So, we may consider, as a toy
model of gas, an ideal gas whose pressure is exactly the right-hand side of the
above equation. Moreover, we also require the heat capacity of an ideal gas to
be proportional to the amount of substance only. So the following equations are
the characteristics of an ideal gas:

p

(
T ;

(
V
N

))
=

NRT

V

CV

(
T ;

(
V
N

))
= cNR,

(1.92)
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where CV is the heat capacity, defined in Definition 1.2.4. See College Physics
§13.3 The Ideal Gas Law and University Physics Volume 2 §3.5 Heat Capaci-
ties of an Ideal Gas. It is worth mentioning that CV has no T -dependence –
Regnault’s law.

Recalling (1.88), we may obtain Helmholtz’s free energy of the ideal gas:

F

[
T ;

(
V
N

)]
− F

[
T ;

(
V∗
N

)]
= −

∫ V

V∗

NRT

V ′
dV ′ = −NRT ln

V

V∗
, (1.93)

where V∗ is some initial volume, see Definition 1.3.7:

F

[
T ;

(
V∗
N

)]
= 0. (1.94)

Note that ln = log, see Algebra and Trigonometry 2e §6.3 Logarithmic Functions
and Algebra and Trigonometry 2e §6.5 Logarithmic Properties. If we choose an
initial condition, namely at V∗ = v(T )N , where v is a function of absolute
“temperature” and N of the amount of substance as a normalization factor
then:

F

[
T ;

(
V
N

)]
= −NRT ln

V

v(T )N
. (1.95)

Exercise 1.3.3. Plot x 7→ − ln(x) and show V 7→ F

[
T ;

(
V
N

)]
is a decreasing

function. I.e., for the same amount of ideal gas, the smaller the volume V is,
the more work can be done by the system.

By Definition 1.2.4,

U

(
T ;

(
V
N

))
− U

(
T∗;

(
V
N

))
=

∫ T

T∗

cNRdT ′ = cNR(T − T∗) (1.96)

where we set:

U

(
T∗;

(
V
N

))
= 0, (1.97)

see Definition 1.2.3. Hence we may write:

U

(
T ;

(
V
N

))
= cNRT +Nu, (1.98)

where u = −cRT∗. Note that the internal energy of the ideal gas does not
change under isothermal processes.

As we obtain the internal energy of ideal gas, let us consider a quasistatic
adiabatic process: (

T ;

(
V
N

))
qa−→

(
T ′;

(
V ′

N

))
(1.99)

Let ∆V := V ′ − V and ∆T = T ′ − T , and p be the mechanical pressure of the
ideal gas. Then the work ∆W done by the ideal gas is, up to (∆V )2,

∆W = p∆V =
NRT

V
∆V, (1.100)
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where we use the equation of state. By energy conservation:

U(T ;V,N)
⇓∆W

// U(T ′;V ′, N) (1.101)

we have

∆W = U

(
T ;

(
V
N

))
− U

(
T ′;

(
V ′

N

))
= −cNR∆T. (1.102)

Hence, we obtain the following differential equation:

NRT

V
dV = −cNRdT. (1.103)

Separating the variables:

c

∫
dT

T
= −

∫
dV

V
(1.104)

we obtain the Poisson equation for an ideal gas:

T cV = constant under an adiabatic process (1.105)

1.4 Heat and Carnot’s Theorem

Definition 1.4.1 (Maximum Heat Transfer From Heat Bath). For an isother-
mal process:

(T ;X1)
i−→ (T ;X2), (1.106)

let us define the maximum heat transferQmax (T ;X1 7→ X2) from the T -reservoir
to the system:

Qmax (T ;X1 7→ X2) := max

{
Q

∣∣∣∣ U(T ;X1) ⇓W

⇓Q // U(T ;X2)

}
(1.107)

It follows, by Definition 1.3.6 and Definition 1.3.7,

Qmax (T ;X1 7→ X2) = Wmax (T ;X1 7→ X2) + U (T ;X2)− U (T ;X1)

= U (T ;X2)− F [T ;X2]− U (T ;X1) + F [T ;X1]
(1.108)

By Theorem 1.3.2, Qmax (T ;X1 7→ X2) is achieved by a quasistatic isothermal

process (T ;X1)
qi−→ (T ;X2).

1.4.1 Generalized Isothermal Process

Let us construct a generalized isothermal process with T ′-reservoir, namely a
process from (T,X1) to (T ′, X2) under constant “temperature” T ′.
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Theorem 1.4.1 (Generalized Isothermal Process). Let us consider the following
processes:

((T ;X1) | (T ′;λY ))
a−→

(
T̃ ;X1 ⊕ λY

)
a−→ (T ′λ;X2 ⊕ λY ) , (1.109)

where the first adiabatic process is the adiabatic wall removal in Lemma 1.3.1.
Then under the thermodynamic limit λ 99K +∞, we obtain a generalized isother-
mal process under T ′-reservoir:

(T ;X1)
i’−→ (T ′;X2). (1.110)

Proof. The corresponding state transitions are the following, see (1.49):
U(T ′;λY ) //

Q′
λ

��

U (T ′λ;λY )

U(T ;X1)
⇓W ′

X

// U (T ′λ;X2)

(1.111)

By Definition 1.3.2 and its consequence in Lemma 1.3.2, both heat transfer
Q′λ and the work done by the system W ′λ := U(T ;X1) − U(T ;T2) + Q′λ have
λ 99K +∞ limits:

U(T ;X1)
⇓W ′

⇓Q′
// U(T ′;X2) (1.112)

where Q′ := limλ→∞Q′λ, W
′ := limλ→∞W ′λ, and T = limλ→∞ T ′λ. ■

Remark 9 (Wall-Removal i’-Process). If we set X2 = X1:

(T ;X1)
i’−→ (T ′;X1) (1.113)

since the state stays X1, such i’-process provides zero work. As mentioned in
Definition 1.1.3, such wall-removal i’-process requires no work as well.

Corollary 1.4.1.1. If a quasistatic adiabatic process (T ;X1)
qa←→ (T ′;X3) ex-

ists, the maximum work done by the system from (T ;X1) to (T ′;X2) under T ′

is given by the following quasistatic processes:

(T ;X1)
qa−→ (T ′;X3)

qi−→ (T ′;X2). (1.114)

Similarly, the maximum heat transfer from the environment is also given by the
above quasistatic process.

Proof. Let W ′ be the work done by an arbitrary generalized isothermal process

(T ;X)
i’−→ (T ′;X ′) under T ′. Compare the following two processes:

(T ;X1)

i’
++

qa
11 (T
′;X3) qi 11 (T

′;X2) (1.115)
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The work W ′qa done by the quasistatic adiabatic process is given by the following
energy conservation:

U(T ;X1)
⇓W ′

qa

// U(T ′;X3) (1.116)

The quasistatic isothermal process is expressed as:

U(T ;X3)
⇓W ′

qi

⇓Q′
qi // U(T ′;X2) (1.117)

I.e., the work Wq done by these quasistatic processes is Wq = W ′qa +W ′qi.
Reverting quasistatic processes, consider the following cycle:

(T ;X1)

i’
++

(T ′;X3)
qa
mm (T ′;X2)

qi
mm (1.118)

Let Wcyc be the work done by the above cycle:

Wcyc = W ′ −Wq. (1.119)

By Theorem 1.3.1, Wcyc ≦ 0 since the whole cycle is under T ′-reservoir. In
other words, it is an isothermal cycle, hence

W ′ ≦ Wq. (1.120)

Moreover, with the heat transferQ′ from T ′-reservoir through (T ;X1)
i’−→ (T ′;X2),

see (1.112), we obtain:

0 ≧ Wcyc = (Q′ − U(T ′;X2) + U(T ;X1))

− (U(T ;X1)− U(T ′;X3) + F [T ′;X3]− F [T ′;X2])

= Q′ + F [T ′;X2]− F [T ′;X3] + U(T ′;X3)− U(T ′;X2)

= Q′ +Qmax (T
′ : X2 7→ X3) .

(1.121)

Hence, we conclude:

Q′ ≦ −Qmax (T
′ : X2 7→ X3) = Q′qi. (1.122)

■

Definition 1.4.2 (Postulate: Adiabatic Accessible Lower “Temperature” State).
Let T > 0, and X0 be a state. We assume that there exist (T ′;X1) and a qua-
sistatic adiabatic process:

(T ;X0)
qa−→ (T ′;X1) (1.123)

with 0 < T ′ < T .
Experimentally, through adiabatic expansion of gas, the system provides

positive work outside and “temperature” drops, see College Physics 2e §15.2
The First Law of Thermodynamics and Some Simple Processes and University
Physics Volume 2 §3.6 Adiabatic Processes for an Ideal Gas, and check “adia-
batic expansion process.”

22

https://openstax.org/books/college-physics-2e/pages/15-2-the-first-law-of-thermodynamics-and-some-simple-processes
https://openstax.org/books/college-physics-2e/pages/15-2-the-first-law-of-thermodynamics-and-some-simple-processes
https://openstax.org/books/university-physics-volume-2/pages/3-6-adiabatic-processes-for-an-ideal-gas
https://openstax.org/books/university-physics-volume-2/pages/3-6-adiabatic-processes-for-an-ideal-gas


Lemma 1.4.1 (Positive Heat Transfer). For any (T ;X0), there exists X1 with

Qmax(T ;X0 7→ X1) > 0. (1.124)

Proof. Given (T ;X0), let (T
′;X1) be an adiabatic accessible lower “temperature

state in Definition 1.4.2. Consider the following isothermal cycle:

(T ;X1)

qi --
(T ;X0)

qa --
(T ′;X1)

i

kk (1.125)

where the process (T ′;X1)
i−→ (T ;X1) is the generalized isothermal process under

T -reservoir – not T ′! – in Theorem 1.4.1, and T ′ > 0 is that of Definition 1.4.2:

0 < T ′ < T. (1.126)

Let Wcyc be the work done by the above isothermal cycle under T . By 1.3.1,
Wcyc ≦ 0:

0 ≧ Wcyc =Wqi +Wqa +Wi’

=F [T ;X1]− F [T ;X0] + U(T ;X0)− U(T ′;X1) + 0

>F [T ;X1]− F [T ;X0] + U(T ;X0)− U (T (> T ′);X1)

= −Qmax(T ;X0 7→ X1),

(1.127)

where we use Lemma 1.2.2 and Definition 1.4.1. ■

1.4.2 Carnot’s Theorem and Absolute Temperature

Let us start with a key lemma:

Lemma 1.4.2 (Tanaka Lemma). Let (T ;X)
qi−→ (T ;X ′) be a quasistatic isother-

mal process. If Qmax(T ;X 7→ X ′) = 0, then there exists the corresponding

quasistatic adiabatic process: (T ;X)
qa−→ (T ;X ′).

Proof. By Lemma 1.2.1 of T ′ = T case, either (T ;X)
a−→ (T ;X ′) or (T ;X)

a←−
(T ;X ′) exists. Suppose (T ;X)

a−→ (T ;X ′) exists; for the other case, we can
replace X and X ′, see Remark 10 for this complementary part. For the corre-
sponding operation X 7→ X ′, we have a quasistatic adiabatic process:

(T ;X)
qa−→ (T ′;X ′), (1.128)

where the final “temperature” T ′ is unknown. We will show that T ′ is indeed
T and it is the desired quasistatic adiabatic process.

If we suppose T ′ > T , then we have the following adiabatic process:

(T ;X)

a

33(T ′;X ′)

qa
rr

(T ;X ′) (1.129)
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By Definition 1.2.6, no such a “temperature” decreasing adiabatic process exists,
hence we conclude T ′ ≦ T . To show T ′ = T , suppose T ′ < T for contradiction.
By Lemma 1.2.2, we have U(T ′;X ′) < U(T ;X ′). Now, we obtain the following
cycle:

(T ;X)

qa --
(T ′;X ′)

i --
(T ;X ′)

qi

kk (1.130)

where (T ′;X ′)
i−→ (T ;X ′) is a generalized isothermal process under T -reservoir.

That is, the whole cycle is isothermal, and, by Theorem 1.3.1, the work done
by the cycle Wcyc is non-positive:

0 ≧ Wcyc = U(T ;X ′)− U(T ;X) +Qmax(T ;X 7→ X ′) + U(T ;X)− U(T ′;X ′).
(1.131)

Recalling the hypothesisQmax(T ;X 7→ X ′) = 0, we obtain U(T ;X ′)−U(T ′;X ′) ≦
0, which is absurd. Hence, we establish T ′ = T . ■

Remark 10. If (T ;X)
a←− (T ;X ′) exists, then we may consider the corresponding

quasistatic process: (
T̃ ;X

)
qa←− (T ;X ′) (1.132)

If T̃ > T were the case, then we would have the following “temperature” de-
creasing adiabatic process:

(T ;X) (T ;X ′)
aoo

(
T̃ ;X ′

)
qaoo (1.133)

which contradicts with Definition 1.2.6, hence T̃ ≦ T . If we suppose T̃ < T ,

to show T̃ = T by proof by contradiction, then we can form the following
isothermal cycle:

(T ;X)

qi --
(T ;X ′)

qa -- (
T̃ ;X

)
i’

jj (1.134)

where i’-process is under T -reservoir and by Lemma 1.2.2, U(T ;X) > U
(
T̃ < T ;X

)
as T > T̃ . The total work done by this cycle W becomes

W = U(T ;X)− U(T ;X ′)

+Qmax(T ;X 7→ X ′) + U(T ;X ′)− U
(
T̃ ;X

)
+ 0

= U(T ;X)− U
(
T̃ ;X

)
.

(1.135)

By Theorem 1.3.1, W ≦ 0 i.e., U(T ;X) ≦ U
(
T̃ ;X

)
, contradiction. Hence

T̃ = T holds.
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Theorem 1.4.2 (The Universality of Qmax (Carnot)). Let (TL;X0) and X1

s.t., Qmax(TL;X0 7→ X1) > 0, see Lemma 1.4.1. For TH, let us consider
Qmax(TH;X

′
0 7→ X ′1), where (TH;X

′
0) and (TH;X

′
1) are some states s.t., the

following quasistatic adiabatic processes exist:

(TH;X
′
0) (TH;X

′
1)OO

qa

��
(TL;X0)
��

qa

OO

(TL;X1)

(1.136)

We claim that the ratio of the maximum heat transfers: Qmax(TL;X0 7→ X1)
and Qmax(TH;X

′
0 7→ X ′1) depends on neither a specific choice of thermodynamic

systems nor the states, but solely on the “temperatures” TL and TH:

fC(TH, TL) :=
Qmax(TH;X

′
0 7→ X ′1)

Qmax(TL;X0 7→ X1)
(1.137)

We call fC the Carnot function.

Definition 1.4.3 (Absolute Temperature). Before we state the proof of The-
orem 1.4.2, let us define absolute temperatures that we have already used in
Remark 1 and Example 1.3.2. Observe:

fC(TH, TL) =
Qmax(TH;∼)
Qmax(TM;∼)

Qmax(TM;∼)
Qmax(TL;∼)

=
fC(TH, TM)

fC(TL, TM)
, (1.138)

where TM is an arbitrary temperature and ∼ stands for the corresponding tran-
sitions under given temperatures. As fC(TH, TL) depends solely on TH and TL,

so as fC(TH,TM)
fC(TL,TM) . This motivates us to introduce absolute temperatures; a tem-

perature scale is called absolute, for instance Kelvin or Rankine, iff the Carnot
function coincides with the ratio of temperatures:

fC(TH, TL) =
TH

TL
. (1.139)

We use an absolute temperature – in stead of some empirical “temperature” –
for equilibrium states.

Exercise 1.4.1 (Temperature Conversions). Find conversions among Celsius,
Kelvin, Fahrenheit, and Rankine scales, see College Physics §13.1 Temperature
and University Physics Volume 2 §1.2 Thermometers and Temperature Scales.

Definition 1.4.4 (Carnot Cycle and Heat Engine). Let us define one of the
most important concepts in Thermodynamics, Carnot cycle. The following cycle
– a heat “engine” – is called Carnot cycle:

(TH;X
′
0)

qi // (TH;X
′
1)

qa

��
(TL;X0)

qa

OO

(TL;X1)
qi
oo

(1.140)
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The work Wcyc done by the above Carnot cycle is:

Wcyc = Wmax (TH;X
′
0 7→ X ′1) + U(TH;X

′
1)− U(TL;X1)

+Wmax (TL;X1 7→ X0) + U(TL;X0)− U(TH;X
′
0)

= Wmax (TH;X
′
0 7→ X ′1) + U(TH;X

′
1)− U(TH;X

′
0)

− (Wmax (TL;X0 7→ X1) + U(TH;X
′
0)− U(TL;X0))

= Qmax (TH;X
′
0 7→ X ′1)−Qmax (TL;X0 7→ X1) ,

(1.141)

where we have used Definition 1.4.1.
By Definition 1.4.1, Qmax (TH;X

′
0 7→ X ′1) is the heat transfer from TH-reservoir

to the system andQmax (TH;X1 7→ X0) = −Qmax (TH;X0 7→ X1) < 0 is the heat
transfer from TL-reservoir to the system along with X1 7→ X0, i.e., along with
X1 7→ X0 Qmax (TH;X0 7→ X1) > 0 is the heat transfer from the system to
TL-reservoir. Such an energy transformer – from heat to work – is called a heat
engine, see Definition 1.4.5 and University Physics Volume 2 §4.2 Heat Engines.

Proof of Theorem 1.4.2. Let us consider a state Y0 of an arbitrary system. By
Lemma 1.4.1, there exists Y1 with

Qmax (TL;Y0 7→ Y1) > 0. (1.142)

For the following Carnot cycle:

(TH;Y
′
0)

qi // (TH;Y
′
1)

qa

��
(TL;Y0)

qa

OO

(TL;Y1)
qi
oo

(1.143)

and given Qmax (TL;X0 7→ X1) > 0, let us define a positive size parameter:

λ :=
Qmax (TL;Y0 7→ Y1)

Qmax (TL;X0 7→ X1)
> 0. (1.144)

Consider the following scaled but opposite Carnot cycle of λX and (1.143):

(TH;λX
′
1)

qi // (TH;λX
′
0)

qa

��

(TH;Y
′
0)

qi // (TH;Y
′
1)

qa

��
(TL;λX1)

qa

OO

(TL;λX0)
qi
oo (TL;Y0)

qa

OO

(TL;Y1)
qi
oo

(1.145)

They can be processed simultaneously since they share the same temperature
profiles:

(TH;λX
′
1 ⊕ Y ′0)

qi // (TH;λX
′
0 ⊕ Y ′1)

qa

��
(TL;λX1 ⊕ Y0)

qa

OO

(TL;λX0 ⊕ Y1)
qi
oo

(1.146)
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The bottom quasistatic isothermal process satisfies:

Qmax (TL;λX0 ⊕ Y1 7→ λX1 ⊕ Y0)

= λQmax (TL;X0 7→ X1)−Qmax (TL;Y0 7→ Y1)

= 0,

(1.147)

where we have used Definition 1.4.4 and the very definition of λ in (1.144).
Hence we may apply Lemma 1.4.2, i.e., there exists a corresponding quasistatic
adiabatic process. Replacing the bottom process, we obtain the following cycle:

(TH;λX
′
1 ⊕ Y ′0)

qi // (TH;λX
′
0 ⊕ Y ′1)

qa

��
(TL;λX1 ⊕ Y0)

qa

OO

(TL;λX0 ⊕ Y1)qa
oo

(1.148)

By construction, it is given by three adiabatic processes with an isothermal
process under TH- reservoir. That is, it is an isothermal cycle; since each pro-
cess is quasistatic, by Theorem 1.3.1, the total work done is zero. Recalling
Definition 1.4.4 and (1.141), we obtain:

0 = −λ (Qmax (TH;X
′
0 7→ X ′1)−Qmax (TL;X0 7→ X1))

+Qmax (TH;Y
′
0 7→ Y ′1)−Qmax (TL;Y0 7→ Y1)

= − Qmax (TL;Y0 7→ Y1)

Qmax (TL;X0 7→ X1)
(Qmax (TH;X

′
0 7→ X ′1)−Qmax (TL;X0 7→ X1))

+Qmax (TH;Y
′
0 7→ Y ′1)−Qmax (TL;Y0 7→ Y1)

= −Qmax (TL;Y0 7→ Y1)
Qmax (TH;X

′
0 7→ X ′1)

Qmax (TL;X0 7→ X1)
+Qmax (TH;Y

′
0 7→ Y ′1)

(1.149)

Since Qmax (TL;Y0 7→ Y1) > 0 and the system Y is arbitrary, we establish:

fC :=
Qmax (TH;X

′
0 7→ X ′1)

Qmax (TL;X0 7→ X1)
=

Qmax (TH;Y
′
0 7→ Y ′1)

Qmax (TL;Y0 7→ Y1)
(1.150)

the universality – independence of the physical systems – of Carnot function
fC. ■

Remark 11. See College Physics 2e §15.4 Carnot’s Perfect Heat Engine: The
Second Law of Thermodynamics Restated, University Physics Volume 2 §4.5
The Carnot Cycle, and June 12, 1824: Sadi Carnot publishes treatise on heat
engines9.

9https://www.aps.org/publications/apsnews/200906/physicshistory.cfm
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1.4.3 Efficiency of Heat Engines

Definition 1.4.5 (Efficiency of Heat Engines). Let 0 < TL < TH. If a heat
engine takes QH > 0 of heat from TH-reservoir, gives QL > 0 to TL-reservoir,
the work W done by the engine is defined via:

E
⇓W ⇓QL

⇓QH // E W = QH −QL. (1.151)

The efficiency ε of this heat engine is:

ε :=
W

QH
= 1− QL

QH
. (1.152)

See College Physics §15.2 The First Law of Thermodynamics and Some Simple
Processes and University Physics Volume 2 §4.2 Heat Engines.

Lemma 1.4.3 (The Efficiency of Carnot Cycle). As a heat engine, the efficiency
of the Carnot cycle in Definition 1.4.4 is

εC = 1− TL

TH
, (1.153)

where TL, TH are absolute temperatures of reservoirs.

Proof. By Definition 1.4.3,

fC(TH, TL) =
TH

TL
=

Qmax(TH;X
′
0 7→ X ′1)

Qmax(TL;X0 7→ X1)
(1.154)

and
Wcyc = Qmax (TH;X

′
0 7→ X ′1)−Qmax (TL;X0 7→ X1) , (1.155)

we obtain the desired result:

1− Qmax(TL;X0 7→ X1)

Qmax(TH;X ′0 7→ X ′1)
= 1− TL

TH
, (1.156)

■

Remark 12 (Maximum Efficiency). Carnot’s cycle is sometimes called a perfect
heat engine: College Physics §15.4 Carnot’s Perfect Heat Engine: The Second
Law of Thermodynamics Restated and University Physics Volume 24.5 The
Carnot Cycle. It means that for any heat engine between two heat baths TL <
TH , its efficiency is always smaller than, or equal to, that of Carnot’s cycle:

Exercise 1.4.2. Carnot showed that no heat engine with greater efficiency than
that of Carnot’s cycle. Let’s us show his claim.

Consider an arbitrary heat engine:

e
⇓w ⇓qL

⇓qH // e (1.157)
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1. Define the efficiency ε′ of this process.

2. Let λ := qH
QH

and consider the inverse of the λ-scaled Carnot cycle in
Lemma 1.4.3.

3. If we combine these two processes – (1.157) and the scaled inverse Carnot
process in Lemma 1.4.3 – we have another heat engine:

E′
⇓W ′ ⇓Q′

L

⇓Q′
H // E′ (1.158)

Find W ′, Q′H, and Q′L.

4. Show that the combined system thermally interacts with only one heat
bath.

5. If we identify such a cycle as an isothermal process, we may apply Theo-
rem 1.3.1. Then, conclude ε′ ≦ εC.

We can show his theorem under milder conditions with mathematical rigor,
see Theorem 1.5.4.

1.5 Entropy

Heat cannot be completely converted to mechanical work and always involves
loss. The quantity that gives an analytical expression to this tendency toward
loss of availability is entropy.

1.5.1 Entropy

Definition 1.5.1 (Entropy). We define, for an equilibrium state (T ;X),

S(T ;X) :=
U(T ;X)− F [T ;X]

T
. (1.159)

We call S(T ;X) the entropy of the state (T ;X). For a quasistatic isother-

mal process, (T ;X1)
qi−→ (T ;X2), recalling Definition 1.4.1, the heat transfer

Qmax (T ;X1 7→ X2) from T -reservoir is:

Qmax (T ;X1 7→ X2) = U (T ;X2)−F [T ;X2]− (U (T ;X1)− F [T ;X1]) (1.160)

Hence, entropy S satisfies:

S(T ;X1)
⇓Qmax/T // S(T ;X2) S(T ;X2)− S(T ;X1) =

Qmax (T ;X1 7→ X2)

T
(1.161)

See also College Physics §15.6 Entropy and the Second Law of Thermodynamics
and University Physics Volume 2 §4.6 Entropy. That is, the entropy S(T ;X) is a
stock and the corresponding flow is the maximum heat transfer per temperature.
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Remark 13 (Availability and Unavailability). Recalling the natures of Helmholtz’
free energy F and internal energy U , the very definition of entropy S := U−F

T
implies the following:

When entropy increases, a certain amount of energy becomes per-
manently unavailable to do work. The energy is not lost, but its
character is changed, so that some of it can never be converted to
doing work—that is, to an organized force acting through a dis-
tance.10

Exercise 1.5.1. Find the corresponding SI unit for the entropy S. See NIST
Guide to the SI, Chapter 4: The Two Classes of SI Units and the SI Prefixes11.

Lemma 1.5.1. Under quasistatic adiabatic processes in Theorem 1.4.2:

(TH;X
′
0) (TH;X

′
1)OO

qa

��
(TL;X0)
��

qa

OO

(TL;X1)

(1.162)

the change in entropy is invariant:

S(TH;X
′
0)− S(TL;X0) = S(TH;X

′
1)− S(TL;X1). (1.163)

Proof. By Theorem 1.4.2 and Definition 1.4.3, along with the given quasistatic
adiabatic processes,

TH

TL
=

Qmax(TH;X
′
0 7→ X ′1)

Qmax(TL;X0 7→ X1)
(1.164)

holds. Hence:

S(TH;X
′
1)− S(TH;X

′
0) =

Qmax(TH;X
′
0 7→ X ′1)

TH

=
Qmax(TL;X0 7→ X1)

TL

= S(TL;X1)− S(TL;X0)

(1.165)

■

Remark 14 (Entropy and Quasistatic Adiabatic Process). As we did for internal
energy in Definition 1.2.3 and Helmholtz’s free energy in Definition 1.3.7, we
may choose a reference point s.t., the entropy itself is invariant under quasistatic
adiabatic processes. We choose a reference point (T∗;λX∗), λ > 0 and the
corresponding entropy value λS∗ for a scaled system with:

S(T∗;λX∗) := λS∗ (1.166)

10College Physics 2e §15.6 Entropy and the Second Law of Thermodynamics: Disorder and
the Unavailability of Energy

11Chapter 4 of https://www.nist.gov/pml/special-publication-811
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and for any (T ;λX) with (T ;λX)
qa←→ (T∗;λX∗),

S(T ;λX) := λS∗. (1.167)

If we choose (TL;X0) as the reference point (T∗;X∗), we obtain 0 = S(TH;X
′
1)−

S(TL;X1). That is, along with a quasistatic adiabatic process, say (TL;X1)
qa−→

(TH ;X ′1), entropy does not change:

S(TL;X1) = S(TH;X
′
1). (1.168)

Theorem 1.5.1. Entropy S is an increasing function of temperature. Moreover,
for a state (T ;X), if both entropy S and internal energy are differentiable at
(T ;X):

∂U(T ;X)

∂T
= T

∂S(T ;X)

∂T
. (1.169)

Proof. Let T1, T2 s.t., 0 < T1 < T2, andX1 be an arbitrary state of some system,
and X2, X3 be states with

(T2;X1)
qa←→ (T1;X2)

(T1;X1)
qa←→ (T2;X3).

(1.170)

Then we consider the following two cycles:

(T2;X1)
i’

��

(T2;X1)
qi // (T2;X3)

qa

��
(T1;X2)

qa

OO

(T1;X1)
qioo (T1;X1)

i’

__
(1.171)

Along with the left cycle, as (T2;X1)
i’−→ (T1;X1) is a T1-isothermal process with

no work, see Remark 9, we may apply Theorem 1.3.1 for the total work done
by the cycle:

0 ≧Wmax (T1;X1 7→ X2) +Wad ((T1;X2)→ (T2;X2)) + 0

= F [T1;X1]− F [T1;X2] + U (T1;X2)− U (T2;X1)

= F [T1;X1]− F [T1;X2] + U (T1;X2)− U (T2;X1)− U (T1;X1) + U (T1;X1)

= T1 (S (T1;X2)− S (T1;X1))− U (T2;X1) + U (T1;X1)

(1.172)

As in Remark 14, the entropy is invariant under quasistatic adiabatic processes.
So, we have S (T1;X2) = S (T2;X1). We obtain

T1 (S (T2;X1)− S (T1;X1))− U (T2;X1) + U (T1;X1) ≦ 0 (1.173)

i.e.,

S (T2;X1)− S (T1;X1) ≦
U (T2;X1)− U (T1;X1)

T1
. (1.174)
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Similarly, along with the right cycle, an isothermal cycle under T2, the total
work W ′ done by the cycle satisfies:

0 ≧Wmax (T2;X1 7→ X3) +Wad ((T2;X3)→ (T1;X1)) + 0

= F [T2;X1]− F [T2;X3] + U (T2;X3)− U (T1;X1)− U (T2;X1) + U (T2;X1)

= T2 (S (T2;X3)− S (T2;X1))− U (T1;X1) + U (T2;X1)

= T2 (S (T1;X1)− S (T2;X1))− U (T1;X1) + U (T2;X1)

(1.175)

Hence, we obtain:

U (T2;X1)− U (T1;X1)

T2
≦ S (T2;X1)− S (T1;X1) . (1.176)

Since U is an increasing function of temperature by Lemma 1.2.2, the left-hand
side is positive as T1 < T2. Thus, we conclude that the entropy is also an
increasing function of temperature:

S (T1;X1) < S (T2;X1) . (1.177)

Combining the outcomes, we have:

1

T2

U (T2;X1)− U (T1;X1)

T2 − T1
≦

S (T2;X1)− S (T1;X1)

T2 − T1
≦

1

T1

U (T2;X1)− U (T1;X1)

T2 − T1
(1.178)

Hence, if we take the limit: T1 < T2 99K T := T1, we obtain the desired result:

1

T

∂U(T ;X)

∂T
=

∂S(T ;X)

∂T
. (1.179)

■

Corollary 1.5.1.1. As we choose, if two states are accessible with a quasistatic

adiabatic process, say (T1;X1)
qa←→ (T2;X2), then S(T1;X1) = S(T2;X2) is the

case. We claim the converse is also the case, namely if S(T1;X1) = S(T2;X2)
then there exists a quasistatic adiabatic process to connect these two states.

Proof. Suppose S(T1;X1) = S(T2;X2). For a state (T1;X1), consider the fol-
lowing quasistatic adiabatic process:

(T1;X1)
qa−→ (T3;X2), (1.180)

where T3 is some unknown final temperature. We will show T3 coincides T2, i.e.,
this is the desired quasistatic adiabatic process. Clearly, we have S(T1;X1) =
S(T3;X2), and hence:

S(T2;X2) = S(T1;X1) = S(T3;X2) (1.181)

Since S is an increasing function of temperature, we conclude T2 = T3. ■

32



Example 1.5.1 (Entropy and Helmholtz’s Free Energy of Ideal Gas). Let us

fix the constant v(T ) in (1.95) of Example 1.3.2. Consider a state

(
T ;

(
V
N

))
with a reference point: (

T ;λ

(
V
N

))
qa←→

(
T ;λ

(
V∗
N

))
.

S

(
T∗;λ

(
V∗
N

))
:= λcNR, λ > 0.

(1.182)

As shown in Example 1.3.2, we have F and S for the ideal gas, so as entropy:

S

(
T ;

(
V
N

))
:=

U

(
T ;

(
V
N

))
− F

[
T ;

(
V
N

)]
T

=
cNRT +Nu+NRT ln V

v(T )N

T
(1.183)

As in Remark 14, the entropy remains constant under a quasistatic adiabatic
process, we obtain:

λ

(
Nu

T
+NR ln

V

v(T )N

)
= 0. (1.184)

That is,

v(T ) =
V

N
exp

( u

RT

)
. (1.185)

Recalling the Poisson equation for an ideal gas T cV = T∗
cV∗ in Example 1.3.2:

V =

(
T∗
T

)c

V∗, (1.186)

we establish:

v(T ) =

(
T∗
T

)c
V∗
N

exp
( u

RT

)
=

(
T∗
T

)c

v∗ exp
( u

RT

)
. (1.187)

We then obtain the entropy for an ideal gas:

S

(
T ;λ

(
V
N

))
= λ

(
cNR+NR ln

((
T

T ∗

)c
V

V∗

))
= λ

(
cNR+NR ln

((
T

T ∗

)c
V

v∗N

))
,

(1.188)

and

F

[
T ;

(
V
N

)]
= −NRT ln

V

v(T )N
= −NRT ln

((
T

T∗

)c
V

V∗

)
+Nu. (1.189)

Example 1.5.2 (Ideal Gas Thermometer). Recalling Example 1.5.1, let us
examine a system of ideal gas as a thermometer:

F

[
T ;

(
V
N

)]
= −NRT ln

((
T

T∗

)c
V

V∗

)
+Nu, (1.190)
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where the temperature is an absolute temperature in Definition 1.4.3. We will
see that the temperature in (1.92) of Example 1.3.2 is indeed the absolute tem-
preture. Consider the following Carnot cycle:

(TH;V
′
0 , N)

qi // (TH;V
′
1 , N)

qa

��
(TL;V0, N)

qa

OO

(TL;V1, N)
qi
oo

(1.191)

As shown in Example 1.3.2, under quasistatic isothermal processes, the internal
energy does not change. Hence, we have

fC(TH, TL) :=
Qmax (TH;V

′
0 7→ V ′1)

Qmax (TL;V0 7→ V1)

=

F

[
TH;

(
V ′0
N

)]
− F

[
TH;

(
V ′1
N

)]
+ U

(
TH;

(
V ′1
N

))
− U

(
TH;

(
V ′0
N

))
F

[
TL;

(
V0

N

)]
− F

[
TL;

(
V1

N

)]
+ F

[
TL;

(
V1

N

)]
− F

[
TL;

(
V0

N

)]

=

F

[
TH;

(
V ′0
N

)]
− F

[
TH;

(
V ′1
N

)]
F

[
TL;

(
V0

N

)]
− F

[
TL;

(
V1

N

)]

=
NRTH ln

(
V ′
1

V ′
0

)
NRTL ln

(
V1

V0

)
(1.192)

Poisson equation in Example 1.3.2 implies:

(TH)
c
V ′1 = (TL)

c
V1

(TH)
c
V ′0 = (TL)

c
V0.

(1.193)

So, we obtain
V ′1
V ′0

=
V1

V0
(1.194)

Thus, we conclude:

fC(TH, TL) =
TH

TL
. (1.195)

That is, the temperature in the state equation of ideal gas pV = NRT is indeed
the absolute temperature.

Example 1.5.3 (Entropy and Heat Transfer). Along with (T ;X)
qi−→ (T ;X ′)

of a quasistatic isothermal process, let

∆Q := Qmax (T ;X 7→ X ′)

∆S := S(T ;X ′)− S(T ;X)
(1.196)
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Then, by Definition 1.5.1, (1.161) becomes

∆S =
∆Q

T
. (1.197)

If the transition X 7→ X ′ is an under quasistatic adiabatic process (T ;X)
qa−→

(T ′;X ′), as no heater transfer ∆Q = 0 and ∆S = 0 by Theorem 1.5.2, the
above equation holds. From (T,X) to (T ′, X ′), consider the following sequence
of quasistatic isothermal and quasistatic adiabatic processes:

(T,X)
qi−→ (T ;X1)

qa−→ (T1, X1)
qi−→ (T1;X2)

qa−→ (T2, X2)
qi−→ · · · (T ′, X ′)

(1.198)
Note that such a path from (T ;X) to (T ′;X ′) is not unique. Along with such
a specific path, we can sum all the entropy change:

S(T ′;X ′)− S(T ;X) =

n∑
k=1

∆Sk =

n∑
k=1

∆Qk

Tk
, (1.199)

where (Tn;Xn) = (T ′;X ′), (T0;X0) = (T ;X), and

∆Qk = ∆Qk + 0 = Qmax (Tk−1;Xk−1 7→ Xk) + 0 (1.200)

is the net heat transfer to the system along with (Tk−1, Xk−1)
qi−→ (Tk−1;Xk)

qa−→
(Tk, Xk) for k ∈ {1, · · · , n}. If we formally take the limit n 99K∞, we obtain

S(T ′;X ′)− S(T ;X) =

∫ (T ′;X′)

(T ;X)

dQ

T
(1.201)

of a Riemann integral representation of the entropy difference, see University
Physics Volume 2 §4.6 Entropy.

1.5.2 Entropy Principle

Theorem 1.5.2 (Entropy Principle). Let X1, X2 be physically accessible states

of some system. For T1, T2 > 0, an adiabatic process exists (T1;X1)
a−→ (T2;X2)

iff
S(T1;X1) ≦ S(T2;X2). (1.202)

Remark 15. As a consequence of this claim, an adiabatic process from (T1;X1)
to (T2;X2) is reversible iff S(T1;X1) = S(T2;X2). Since a quasistatic process is
reversible by the very definition, see Definition 1.2.1 and Theorem 1.5.1.1, the
entropy remains constant under quasistatic processes.

Proof. (⇒) Suppose S(T1, X1) ≦ S(T2;X2). Along with X1 7→ X2, let us
consider the following quasistatic adiabatic process:

(T1;X1)
qa−→ (T3;X2), (1.203)
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where T3 is some unknown final temperature. Since

S(T3;X2) = S(T1;X1) ≦ S(T2;X2) (1.204)

we conclude T3 ≦ T2 by Theorem 1.5.1. By Definition 1.2.2, there exists an
adiabatic process:

(T3;X2)
a−→ (T2;X2). (1.205)

Hence, we obtain the desired adiabatic process:

(T1;X1)
qa−→ (T3;X2)

a−→ (T2;X2). (1.206)

(⇐) Suppose there exists an adiabatic process

(T1;X1)
qa−→ (T2;X2). (1.207)

Along with X2 7→ X1, consider the following quasistatic adiabatic process:

(T2;X2)
qa−→ (T4;X1). (1.208)

Then we obtain:
(T1;X1)

qa−→ (T2;X2)
qa−→ (T4;X1). (1.209)

By Definition 1.2.6, T1 ≦ T4, hence

S(T1;X1) = (T2;X2) ≦ S(T4;X1), (1.210)

since S is an increasing function of temperature by Theorem 1.5.1. ■

Theorem 1.5.3 (Entropy is Essentially Unique). Let λ > 0. If S′ satisfies the
entropy principle in Theorem 1.5.2,

S′ (T ;λX) = λS′(T ;X)

S′(T ;X ⊕ Y ) = S′(T ;X) + S′(T ;Y ),
(1.211)

then there are A > 0, B with,

S′(T ;λX) = AS(T ;λX) + λB. (1.212)

Proof. Let T > 0, andX1, X2 be two physically accessible states of some system.
Suppose S(T ;X1) < S(T ;X2) and define:

A :=
S′(T ;λX2)− S′(T ;λX1)

S(T ;λX2)− S(T ;λX1)
=

S′(T ;X2)− S′(T ;X1)

S(T ;X2)− S(T ;X1)
. (1.213)

As S(T ;X1) < S(T ;X2) implies S(T ;X1)
a−→ S(T ;X2) is irreversible, hence

S′(T ;X1) < S′(T ;X2) and we conclude:

A > 0. (1.214)
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Define B via:

λB := S′(T ;λX2)−AS(T ;λX2)

= S′(T ;λX1)−AS(T ;λX1)

= λ (S′(T ;X1)−AS(T ;X1)) .

(1.215)

Next, we will show forX of an arbitrary accessible state fromX1, S
′(T ;λX) =

AS(T ;λX) + λB. If S(T ;X) ≦ S(T ;X1) then define λA ≧ 0:

λA :=
S(T ;X1)− S(T ;X)

S(T ;X2)− S(T ;X1)
. (1.216)

i.e., λAS(T ;X2)− λAS(T ;X1) = S(T ;X1)− S(T ;X), hence:

S (T ; (λA + 1)X1) = (λA + 1)S(T ;X1)

= λAS(T ;X2) + S(T ;X)

= S (T ;X ⊕ λAX2) .

(1.217)

Similarly, we obtain S (T ; (λA + 1)λX1) = S (T ;λX ⊕ λAλX2). By Corol-
lary 1.5.1.1, there exists a quasistatic adiabatic process:

(T ; (λA + 1)λX1)
qa−→ (T ;λX ⊕ λAλX2) . (1.218)

Then
S′ (T ; (λA + 1)λX1) = S′ (T ;λX ⊕ λAλX2) . (1.219)

moreover:

S(T ;λX1)− S(T ;λX)

S(T ;λX2)− S(T ;λX1)
= λA =

S′(T ;λX1)− S′(T ;λX)

S′(T ;λX2)− S′(T ;λX1)
. (1.220)

Solving this equation for S′(T ;λX), we obtain the desired result for the state
(T ;λX):

S′(T ;λX)− S′(T ;λX1) = λA (S′(T ;λX2)− S′(T ;λX1))

= A (S(T ;λX)− S(T ;λX1))

S′(T ;λX) = AS(T ;λX) + S′(T ;λX1)−AS(T ;λX1)

= AS(T ;λX) + λB.

(1.221)

If S(T ;X) > S(T ;X1), we define λ′A > 0:

λ′A :=
S(T ;X)− S(T ;X1)

S(T ;X2)− S(T ;X1)
> 0 (1.222)

i.e.,
S (T ;X1 ⊕ λ′AX2) = S (T ;λ′AX1 ⊕X) . (1.223)

Then

S(T ;λX)− S(T ;λX1)

S(T ;λX2)− S(T ;λX1)
= λ′A =

S(T ;λX)− S(T ;λX1)

S(T ;λX2)− S(T ;λX1)
(1.224)

and we obtain the same result S′(T ;λX) = AS(T ;λX) + λB. ■
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1.5.3 Entropy for Composite System

Definition 1.5.2. For a composite system, say

{(T1;X1) | · · · | (Tn;Xn)} (1.225)

where | is the adiabatic wall in Lemma 1.3.1, we define

S ({(T1;X1) | · · · | (Tn;Xn)}) :=
n∑

j=1

S (Tj ;Xj) . (1.226)

Lemma 1.5.2 (Entropy Principle for Composite System). Suppose that (X1, · · · , Xn)
and (X ′1, · · · , X ′m) are physically accessible. We claim there exists an adiabatic
process:

({(T1;X1) | · · · | (Tn;Xn)})
a−→ ({(T ′1;X ′1) | · · · | (T ′m;X ′m)}) (1.227)

iff the following inequality is the case:

S ({(T1;X1) | · · · | (Tn;Xn)}) ≦ S ({(T ′1;X ′1) | · · · | (T ′m;X ′m)}) . (1.228)

Proof. It suffices to consider the binary case:

{(T1;X1) | (T2;X2)} (1.229)

The entropy of this system is given by:

S (T1;X1) + S (T2;X2) . (1.230)

Keeping the value, say S (T2;X2) we may change the temperature of the second
component into T1:

S (T2;X2) = S
(
T1; X̃2

)
, (1.231)

where X̃2 is some accessible state of X2. By 1.5.2, it follows that there exists a
quasistatic adiabatic process:

(T2;X2)
qa←→

(
T1; X̃2

)
. (1.232)

Thus, we have

{(T1;X1)|(T2;X2)}
qa←→

{
(T1;X1)

∣∣∣(T1; X̃2

)}
qa←→

(
T1;X1 ⊕ X̃2

)
(1.233)

where the final step is the adiabatic wall removal; since the total system is
already T1, it can be done adiabatically and quasistatic as well.

Continuing this process, we may consider

S ({(T1;X1) | · · · | (Tn;Xn)}) = S
(
T1;X1 ⊕ X̃2 ⊕ · · · ⊕ X̃n

)
(1.234)
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and

S ({(T ′1;X ′1) | · · · | (T ′m;X ′m)}) = S
(
T ′1;X

′
1 ⊕ X̃ ′2 ⊕ · · · ⊕ X̃ ′m

)
(1.235)

That is,(
T1;X1 ⊕ X̃2 ⊕ · · · ⊕ X̃n

)
a−→

(
T ′1;X

′
1 ⊕ X̃ ′2 ⊕ · · · ⊕ X̃ ′m

)
(1.236)

iff the following inequality is the case:

S
(
T1;X1 ⊕ X̃2 ⊕ · · · ⊕ X̃n

)
≦ S

(
T ′1;X

′
1 ⊕ X̃ ′2 ⊕ · · · ⊕ X̃ ′m

)
(1.237)

Since quasistatic adiabatic processes are reversible, we obtain the desired result,
namely,

S ({(T1;X1) | · · · | (Tn;Xn)}) ≦ S ({(T ′1;X ′1) | · · · | (T ′m;X ′m)}) (1.238)

iff the following adiabatic process exists:

({(T1;X1) | · · · | (Tn;Xn)})

qa

��

({(T ′1;X ′1) | · · · | (T ′m;X ′m)})

(
T1;X1 ⊕ X̃2 ⊕ · · · ⊕ X̃n

)
a
//
(
T ′1;X

′
1 ⊕ X̃ ′2 ⊕ · · · ⊕ X̃ ′m

)qa

OO

(1.239)

■

As we examined in Remark 12 and Exercise 1.4.2, Carnot’s cycles have
maximum efficiency as heat engines. Here we give a more rigorous version:

Theorem 1.5.4 (Maximum Efficiency (Carnot)). Under the hypothesis of The-
orem 1.5.1, no heat engine with greater efficiency than that of Carnot’s cycle.

Proof. This proof is based on [LY99].
Consider a heat engine, a cyclic process around (T ;X). 1 − QL

QH
gives the

efficiency of the following heat engine:

U(T ;X)
⇓W ⇓QL

⇓QH // U(T ;X) W = QH −QL. (1.240)

Let (TL;L) and (TH;H) be the initial states of finite size heat-baths with initial
temperatures 0 < TL < TH. Around one cycle, the transition is represented as
the following adiabatic process:

((TH;H) | (T ;X) | (TL;L))
a−→

(
(TH

′;H) | (T ;X) | (TL
′;L)

)
. (1.241)

Through this cyclic process, TL-reservoir receives

QL := U
(
TL
′;L

)
− U (TL;L) (1.242)

39



of heat from the cycle, and TH -reservoir gives

QH := U (TH;H)− U
(
TH
′;H

)
(1.243)

of heat to the cycle.

U(TH;H) //

QH

��

U(TH
′;H)

U(T ;X)
⇓W

//

QL

��

U(T ;X)

U(TL;L) // U(TL
′;L)

W = QH −QL. (1.244)

Suppose QH > 0 and QL > 0; by 1.2.2,

TL < TL
′, TH

′ < TH. (1.245)

As shown in Lemma 1.5.2,

S ((TH;H) | (T ;X) | (TL;L)) ≦ S
(
(TH

′;H) | (T ;X) | (TL
′;L)

)
. (1.246)

By Definition 1.5.2,

S (TH;H) + S (TL;L) ≦ S
(
TH
′;H

)
+ S

(
TL
′;L

)
(1.247)

or equivalently:

S (TH;H)− S
(
TH
′;H

)
≦ S

(
TL
′;L

)
− S (TL;L) (1.248)

If T 7→ S (T ;H) is differentiable in some neighborhood of TH
′ ≦ T ≦ TH, the

left-hand side becomes

S (TH;H)− S
(
TH
′;H

)
=

∫ TH

TH
′

∂S(T ;H)

∂T
dT

=

∫ TH

TH
′

1

T

∂U(T ;H)

∂T
dT

≧
1

TH

∫ TH

TH
′

∂U(T ;H)

∂T
dT

=
1

TH

(
U (TH;H)− U

(
TH
′;H

))
=

QH

TH
.

(1.249)
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Similarly, if T 7→ S (T ;L) is differentiable in some neighborhood of TL
′ ≦ T ≦

TL, left-hand side becomes

S (TL;L)− S
(
TL
′;L

)
=

∫ TL
′

TL

∂S(T ;L)

∂T
dT

=

∫ TL
′

TL

1

T

∂U(T ;L)

∂T
dT

≦
1

TL

∫ TL
′

TL

∂U(T ;L)

∂T
dT

=
1

TL

(
U
(
TL
′;L

)
− U (TL;L)

)
=

QL

TL
.

(1.250)

Thus, we obtain QH

TH
≦ QL

TL
:

1− QL

QH
≦ 1− TL

TH
. (1.251)

This is the desired inequality since 1 − TL

TH
gives the efficiency of the Carnot’s

cycle with two heat baths TL < TH. ■

Definition 1.5.3 (Thermal Contact and Thermal Equilibrium). Let

((T ;X) | (T ′;Y ))
a−→

(
T̃ ;X ⊕ Y

)
(1.252)

be the wall removal process in Lemma 1.3.1 with λ = 1. Let Q be the heat
transfer from Y to X:

Q = U
(
T̃ ;X

)
− U(T ;X) = U(T ′;Y )− U

(
T̃ ;Y

)
. (1.253)

If Q = 0, these two systems are called in thermal equilibrium; we denote:

(T ;X) ∼ (T ′;Y ) (1.254)

iff no heat transfer between X and Y along with (1.252).

Theorem 1.5.5 (Thermal Contact and Thermal Equilibrium). For the adia-
batic wall removal process in (1.252), we claim:

• If the heat transfer between X and Y is zero, then T = T̃ = T ′.

• If T ̸= T ′, then entropy of the composite system increases.

• If (T ;X) ∼ (T ′;Y ) and (T ′;Y ) ∼ (T ′′;Z), then (T ;X) ∼ (T ′′;Z).
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Proof. Suppose the heat transfer along with (1.252) is zero. By Definition 1.5.3,
we have

U
(
T̃ ;X

)
− U(T ;X) = 0 = U(T ′;Y )− U

(
T̃ ;Y

)
. (1.255)

By Lemma 1.2.2, we obtain T = T̃ = T ′.
If we assume T ̸= T ′, the heat transfer must be non-zero. Let

Q = U
(
T̃ ;X

)
− U(T ;X) = U(T ′;Y )− U

(
T̃ ;Y

)
(1.256)

be the heat transfer from Y to X. Without loss of generality, we may suppose
Q > 0, otherwise, swap X ↔ Y . Lemma 1.2.2 implies that

T < T̃ < T ′. (1.257)

Then, the change in total entropy is:

∆S := S
(
T̃ ;X ⊕ Y

)
− S(T ;X)− S(T ′;Y )

= S
(
T̃ ;X

)
− S(T ;X)− S(T ′;Y ) + S

(
T̃ ;Y

)
=

∫ T̃

T

∂S(t;X)

∂t
dt−

∫ T ′

T̃

∂S(t;Y )

∂t
dt

(1.258)

By Theorem 1.5.1, we obtain:

∆S =

∫ T̃

T

1

t

∂U(t;X)

∂t
dt−

∫ T ′

T̃

1

t

∂U(t;Y )

∂t
dt

>
1

T̃

∫ T̃

T

∂U(t;X)

∂t
dt− 1

T̃

∫ T ′

T̃

∂U(t;Y )

∂t
dt

=
1

T̃

(
U
(
T̃ ;X

)
− U(T ;X)− U (T ′;Y ) + U

(
T̃ ;Y

))
(1.259)

Since the process is adiabatic and no net work is done, the last expression is

zero: U(T ;X)+U(T ′;Y ) = U
(
T̃ ;X ⊕ Y

)
. Hence we obtain the desired result:

∆S > 0. (1.260)

Remark 16 (Second Law of Thermodynamics). This is the well-known entropy
statement of the second law of thermodynamics, namely spontaneous heat trans-
fer is always from higher temperature to lower temperature. It is referred to as
the Clausius statement of the second law of thermodynamics.

The word “spontaneously” here means no other effort has been made
by a third party, or one that is neither the hotter nor colder object.12

12University Physics Volume 2 §4.1 Reversible and Irreversible Processes
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See also College Physics §15.6 Entropy and the Second Law of Thermodynamics
and University Physics Volume 2 §4.6 Entropy.

Finally, suppose X and Y are in thermal equilibrium, and Y and Z are in
thermal equilibrium as well. As shown above, we have T = T ′ = T ′′. To show
(T ;X) ∼ (T ;Z), consider the following wall removal:

((T ;X) | (T ;Z))
a−→

(
T̃ ;X ⊕ Z

)
. (1.261)

The heat transfer QX←Z from Z to X becomes

QX←Z = U
(
T̃ ;X

)
− U(T ;X) = U(T ;Z)− U

(
T̃ ;Z

)
. (1.262)

If T < T̃ , since U is T -increasing by Lemma 1.2.2, we have

U
(
T̃ ;X

)
− U(T ;X) > 0

U(T ;Z)− U
(
T̃ ;Z

)
< 0,

(1.263)

which is absurd; if T̃ < T , we have

U
(
T̃ ;X

)
− U(T ;X) < 0

U(T ;Z)− U
(
T̃ ;Z

)
> 0,

(1.264)

which is absurd, again. Hence T = T̃ must be the case. Then, as we desire,
QX←Z = 0 holds. ■

Remark 17 (Zeroth Law of Thermodynamics). The last property is called zeroth
law of thermodynamics. Mathematically, the thermal equilbrium as a binary
relation forms an equivalence relation:

• Reflexivity

For any state (T ;X), (T ;X) ∼ (T ;X) holds.

• Symmetry

If (T ;X) ∼ (T ′;Y ), then (T ′;Y ) ∼ (T ;X) is the case.

• Transitivity

If (T ;X) ∼ (T ′;Y ) and (T ′;Y ) ∼ (T ′′;Z), then (T ;X) ∼ (T ′′;Z).

See College Physics 2e §13.1 Temperature and University Physics Volume 2 §1.1
Temperature and Thermal Equilibrium.
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1.5.4 Applications

Theorem 1.5.6 (Helmholtz’s Free Energy is Complete Thermodynamic Func-
tion). Suppose Helmholtz’s free energy is differentiable at (T ;X). We claim

S(T ;X) = −∂F [T ;X]

∂T

U(T ;X) = −T 2 ∂

∂T

(
F [T ;X]

T

) (1.265)

That is if F is known as a function of [T ;X], both entropy S and internal energy
U can be derived – F as a function of [T ;X] is a complete thermodynamic
function.

Proof. By Definition 1.5.1 and Theorem 1.5.1,

∂F [T ;X]

∂T
=

∂ (U(T ;X)− TS(T ;X))

∂T

=
∂U(T ;X)

∂T
− S(T ;X)− T

∂S(T ;X)

∂T
= −S(T ;X).

(1.266)

Similarly,

−T 2 ∂

∂T

(
F [T ;X]

T

)
= −T 2 ∂

∂T

(
U(T ;X)

T
− S(T ;X)

)
= −T 2

(
1

T

∂U(T ;X)

∂T
− U(T ;X)

T 2
− ∂S(T ;X)

∂T

)
= U(T ;X) + T

(
T
∂S(T ;X)

∂T
− ∂U(T ;X)

∂T

)
= U(T ;X).

(1.267)

Hence, if we know F as a function of [T ;X], the internal energy and entropy of
the system can be derived. ■

Definition 1.5.4 (Chemical Potential of Fluid). As we consider in Exam-

ple 1.1.1 and Example 1.3.1, let us consider the reaction of the state

(
T ;

(
V
N

))
under N 7→ N +∆N :

µ

(
T ;

(
V
N

))
:=

∂F

[
T ;

(
V
N

)]
∂N

. (1.268)

We call µ the chemical potential.
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Example 1.5.4 (The Chemical Potential of Ideal Gas). By Example 1.5.1, we
can calculate the chemical potential of an ideal gas:

µ

(
T ;

(
V
N

))
=

∂

∂N

(
−NRT ln

((
T

T∗

)c
V

v∗N

)
+Nu

)
= RT −RT ln

((
T

T∗

)c
V

v∗N

)
+ u

(1.269)

Example 1.5.5 (Maxwell’s Relations – Energy Equation and Ideal Gas). For

simplicity, let us consider

(
T ;

(
V
N

))
of some fluid. Suppose F is sufficiently

smooth, at least continuously double differentiable:

∂

∂V

∂F

[
T ;

(
V
N

)]
∂T

=
∂

∂T

∂F

[
T ;

(
V
N

)]
∂V

(1.270)

Recalling Theorem 1.5.6 and (1.88), we conclude:

∂S

(
T ;

(
V
N

))
∂V

=

∂p

(
T ;

(
V
N

))
∂T

. (1.271)

Hence, as U = TS + F by Definition 1.5.1, we obtain the following energy
equation:

∂U

(
T ;

(
V
N

))
∂V

=
∂

∂V

(
TS

(
T ;

(
V
N

))
+ F

[
T ;

(
V
N

)])

= T

∂p

(
T ;

(
V
N

))
∂T

− p

(
T ;

(
V
N

)) (1.272)

If we apply the energy equation to an ideal gas examined in Example 1.3.2, we
obtain

∂U

(
T ;

(
V
N

))
∂V

= T

∂p

(
T ;

(
V
N

))
∂T

−p
(
T ;

(
V
N

))
= T

∂

∂T

(
NRT

V

)
−NRT

V
= 0

(1.273)
That is, the internal energy of an ideal gas does not depend on the volume –
Joule’s law.

Example 1.5.6 (Adiabatic Expansion). Let us consider an adiabatic expansion

of fluid

(
V
N

)
of Example 1.1.1. Consider the following adiabatic expansion

V 7→ V +∆V,∆V > 0:(
T ;

(
V
N

))
a−→

(
T ′;

(
V +∆V

N

))
, (1.274)
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where T ′ is some final temperature. We will show that

S

(
T ;

(
V
N

))
< S

(
T ′;

(
V +∆V

N

))
. (1.275)

Consider the following quasistatic adiabatic compression:(
T ′;

(
V +∆V

N

))
qa−→

(
T ′′;

(
V
N

))
. (1.276)

Since the pressure of the fluid is always positive during this compression, some
positive work is done on the fluid:

U (T ′;V +∆V,N)
⇓Wexternal>0 // U (T ′′;V,N) (1.277)

With the above adiabatic process, we obtain

U (T ;V,N)
⇓Wexternal>0 // U (T ′′;V,N) U

(
T ;

(
V
N

))
+W = U

(
T ′′;

(
V
N

))
,

(1.278)
i.e., U (T ′′;V,N)− U (T ;V,N) = W > 0:

U (T ;V,N) < U (T ′′;V,N) . (1.279)

By Lemma 1.2.2, we conclude T < T ′′. Moreover, by Theorem 1.5.1,

S

(
T ;

(
V
N

))
< S

(
T ′′;

(
V
N

))
= S

(
T ′;

(
V +∆V

N

))
. (1.280)

By Theorem 1.5.2, such an adiabatic expansion is irreversible. See University
Physics Volume 2 §4.7 Entropy on a Microscopic Scale.
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